Analytical and Bioanalytical Chemistry

, Volume 405, Issue 27, pp 8935–8943 | Cite as

Chiral separation of racemic mandelic acids by use of an ionic liquid-mediated imprinted monolith with a metal ion as self-assembly pivot

  • Li-Hong Bai
  • Xiu-Xiu Chen
  • Yan-Ping Huang
  • Qing-Wei Zhang
  • Zhao-Sheng Liu
Research Paper

Abstract

A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept. Imprinted monoliths were synthesized by use of a mixture of R-mandelic acid (template), 4-vinylpyridine, ethylene glycol dimethacrylate, and several metal ions as pivot between the template and functional monomer. A ternary mixture of dimethyl sulfoxide–dimethylformamide–[BMIM]BF4 containing metal ions was used as the porogenic system. Separation of the enantiomers of rac-mandelic acid was successfully achieved on the MIP thus obtained, with resolution of 1.87, whereas no enantiomer separation was observed on the imprinted monolithic column in the absence of metal ions. The effects of polymerization conditions, including the nature of the metal ion and the ratios of template to metal ions and template to functional monomer, on the chiral separation of mandelic acid were investigated. The results reveal that use of metal ions as a pivot, in combination with ionic liquid, is an effective method for preparation of a highly efficient MIP stationary phase for chiral separation.

Figure

A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept

Keywords

R-Mandelic acid Monolith Molecularly imprinted polymers Chiral separation Metal ion Pivot 

Notes

Acknowledgements

This work was supported by the Hundreds Talents Program of the Chinese Academy of Sciences and supported by the National Natural Science Foundation of China (grant no. 21375096).

Supplementary material

216_2013_7304_MOESM1_ESM.pdf (224 kb)
ESM 1 (PDF 223 kb)

References

  1. 1.
    Ansell RJ (2005) Adv Drug Deliv Rev 57:1809–1835CrossRefGoogle Scholar
  2. 2.
    Priego-Capote F, Ye L, Shakil S, Shamsi SA, Nilsson S (2008) Anal Chem 80:2881–2887CrossRefGoogle Scholar
  3. 3.
    Sellergren B, Shea KJ (1993) J Chromatogr A 635:31–49CrossRefGoogle Scholar
  4. 4.
    Wei ZH, Mu LN, Huang YP, Liu ZS (2012) J Chromatogr A 1237:115–121CrossRefGoogle Scholar
  5. 5.
    Schweitz L, Andersson LI, Nilsson S (1997) Anal Chem 69:1179–1183CrossRefGoogle Scholar
  6. 6.
    Li XX, Bai LH, Wang H, Wang J, Huang YP, Liu ZS (2012) J Chromatogr A 1251:141–147CrossRefGoogle Scholar
  7. 7.
    Greaves TL, Drummond CJ (2013) Chem Soc Rev 42:1096–1120CrossRefGoogle Scholar
  8. 8.
    Harrisson S, MacKenzie SR, Haddleton DM (2002) Chem Commun 23:2850–2851CrossRefGoogle Scholar
  9. 9.
    Booker K, Bowyer MC, Lennard CJ, Holdsworth CI, McCluskey A (2007) Aust J Chem 60:51–56CrossRefGoogle Scholar
  10. 10.
    Wang HF, Zhu YZ, Yan XP, Gao RY, Zheng JY (2006) Adv Mater 18:3266–3277CrossRefGoogle Scholar
  11. 11.
    Wang HF, Zhu YZ, Lin JP, Yan XP (2008) Electrophoresis 29:952–959CrossRefGoogle Scholar
  12. 12.
    Sun XL, He J, Cai JR, Lin AQ, Zheng WJ, Liu X, Chen LX, He XW, Zhang YK (2010) J Sep Sci 33:3786–3793CrossRefGoogle Scholar
  13. 13.
    Li S, Liao C, Li W, Chen Y, Hao X (2007) Macromol Biosci 7:1112–1120CrossRefGoogle Scholar
  14. 14.
    Li S, Tong K, Zhang D, Huang X (2008) J Inorg Organomet Polym 18:264–271CrossRefGoogle Scholar
  15. 15.
    Zheng MX, Li SJ, Luo X (2007) J Macromol Sci A 44:1187–1194CrossRefGoogle Scholar
  16. 16.
    Wu LQ, Li YZ (2003) Anal Chim Acta 482:175–181CrossRefGoogle Scholar
  17. 17.
    Matsui J, Nicholls IA, Takeachi T, Mosbach K, Karube I (1996) Anal Chim Acta 335:71–77CrossRefGoogle Scholar
  18. 18.
    Zhao L, Ban L, Zhang QW, Huang YP, Liu ZS (2011) J Chromatogr A 1218:9071–9079CrossRefGoogle Scholar
  19. 19.
    Matsui J, Kato T, Takeuchi T, Suzuki M, Yokoyama K, Tamiya E, Karube I (1993) Anal Chem 65:2223–2224CrossRefGoogle Scholar
  20. 20.
    Ou J, Kong L, Pan C, Su X, Lei X, Zou H (2006) J Chromatogr A 1117:163–169CrossRefGoogle Scholar
  21. 21.
    Liu H, Zhuang X, Turson M, Zhang M, Dong X (2008) J Sep Sci 31:1694–1701CrossRefGoogle Scholar
  22. 22.
    Mu LN, Wang XH, Zhao L, Huang YP, Liu ZS (2011) J Chromatogr A 1218:9236–9243CrossRefGoogle Scholar
  23. 23.
    Li H, Liu YJ, Zhang ZH, Liao HP, Nie LH, Yao SZ (2005) J Chromatogr A 1098:66–74CrossRefGoogle Scholar
  24. 24.
    Zhang ML, Xie JP, Zhou Q, Chen GQ, Liu Z (2003) J Chromatogr A 984:173–183CrossRefGoogle Scholar
  25. 25.
    Seebach A, Seidel A (2007) Anal Chim Acta 591:57–62CrossRefGoogle Scholar
  26. 26.
    Huang YP, Zhang SJ, Wu X, Zhang QW, Liu ZS (2009) Chromatographia 70:691–698CrossRefGoogle Scholar
  27. 27.
    Sellergren B (2001) J Chromatogr A 906:227–252CrossRefGoogle Scholar
  28. 28.
    Zheng C, Huang YP, Liu ZS (2013) Anal Bioanal Chem 405:2147–2161CrossRefGoogle Scholar
  29. 29.
    Nicholls IA, Ramström O, Mosbach K (1995) J Chromatogr A 691:349–353CrossRefGoogle Scholar
  30. 30.
    Turner NW, Piletska EV, Karim K, Whitcombe M, Malecha M, Magan N, Baggiani C, Piletsky SA (2004) Biosens Bioelectron 20:1060–1067CrossRefGoogle Scholar
  31. 31.
    Sellergren B, Shea KJ (1995) J Chromatogr A 690:29–39CrossRefGoogle Scholar
  32. 32.
    Küsters E, Loux V, Schmid E, Floersheim P (1994) J Chromatogr A 666:421–432CrossRefGoogle Scholar
  33. 33.
    Piletsky SA, Mijangos I, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2005) Macromolecule 38:1410–1414CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Li-Hong Bai
    • 1
  • Xiu-Xiu Chen
    • 1
  • Yan-Ping Huang
    • 1
  • Qing-Wei Zhang
    • 1
  • Zhao-Sheng Liu
    • 1
  1. 1.Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of PharmacyTianjin Medical UniversityTianjinChina

Personalised recommendations