Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 26, pp 8443–8450 | Cite as

Studies on drug metabolism by fungi colonizing decomposing human cadavers. Part I: DNA sequence-based identification of fungi isolated from postmortem material

  • Jorge A. Martínez-Ramírez
  • Juliane Strien
  • Juliane Sanft
  • Gita Mall
  • Grit Walther
  • Frank T. PetersEmail author
Research Paper

Abstract

Cadavers can be colonized by a wide variety of bacteria and fungi. Some of these microbes could change the concentration or the metabolic pattern of drugs present in postmortem samples. The purpose of this study was to identify fungi from human postmortem material and to further assess their potential role in the metabolism of drugs. Aliquots of 252 postmortem samples (heart blood, liver, kidney, and lung) taken from 105 moderately to severely decomposed bodies were streaked on Sabouraud agar for isolation of fungal species. One part of the samples was worked up immediately after autopsy (group I). The second part had previously been stored at −20 °C for at least 1 year (group II). Identification of the isolates was achieved morphologically by microscopy and molecularly by polymerase chain reaction amplification and sequencing of markers allowing species identification of the respective genera. Depending on the genus, different gene fragments were used: calmodulin for Aspergillus, β-tubulin for Penicillium, translation elongation factor 1α for Fusarium, and the internal transcribed spacer region of the ribosomal DNA for all remaining genera. A total of 156 fungal strains were isolated from 62 % of the postmortem materials. By using these primers, 98 % of the isolates could be identified to the species level. The most common genera were Candida (60.0 %—six species), Penicillium (10.3 %—two species), Rhodotorula (7.1 %—one species), Mucor (6.4 %—four species), Aspergillus (3.2 %—four species), Trichosporon (3.2 %—one species), and Geotrichum (3.2 %—one species). Group I samples contained 53 % more fungal species than stored samples suggesting some fungi did not survive the freezing process. The isolated fungi might be characteristic for decomposed bodies. The proposed methodology proved to be appropriate for the identification of fungi in this type of material.

Keywords

Fungi Cadavers Postmortem material PCR Molecular identification 

Notes

Acknowledgments

Jorge Martinez thanks DAAD for the support of this project and the Gesellschaft für Toxikologische und Forensische Chemie (Society of Toxicological and Forensic Chemistry, GTFCh) for providing the travel fund to present part of this work at the 50th Annual Meeting of the International Association of Forensic Toxicologists, June 3–8, 2012, Hamamatsu, Japan. The authors also thank Ricarda Arnold, Stephanie Drobnik, Sabine Eska, Reinhard Heiderstädt, Juliane Höfig, Cornelia Jacob, Adelheid Mattern, Sabine Müller, Christian Ortmann, Friederike Raab, Julia Schermer, and Ulrich Schmatloch for their assistance with sampling and DNA sequencing as well as Daniela Remane for proofreading of the manuscript.

Supplementary material

216_2013_7250_MOESM1_ESM.pdf (768 kb)
ESM 1 (PDF 767 kb)

References

  1. 1.
    Simon GL, Gorbach SL (1984) Intestinal flora in health and disease. Gastroenterology 86(1):174–193Google Scholar
  2. 2.
    Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11(5):247–251CrossRefGoogle Scholar
  3. 3.
    Tuomanen E (2005) Microbial inhabitants of humans—their ecology and role in health and disease. Science 308(5722):635CrossRefGoogle Scholar
  4. 4.
    Bojar RA, Holland KT (2002) Review: the human cutaneous microflora and factors controlling colonisation. World J Microbiol Biotechnol 18(9):889–903CrossRefGoogle Scholar
  5. 5.
    Cohen R, Roth FJ, Delgado E, Ahearn DG, Kalser MH (1969) Fungal flora of the normal human small and large intestine. N Engl J Med 280(12):638–641CrossRefGoogle Scholar
  6. 6.
    Kassamali H, Anaissie E, Rolston K, Kantarjian H, Fainstein V, Bodey GP (1987) Disseminated Geotrichum candidum infection. J Clin Microbiol 25(9):1782–1783Google Scholar
  7. 7.
    Henrich TJ, Marty FM, Milner DA Jr, Thorner AR (2009) Disseminated Geotrichum candidum infection in a patient with relapsed acute myelogenous leukemia following allogeneic stem cell transplantation and review of the literature. Transpl Infect Dis 11(5):458–462CrossRefGoogle Scholar
  8. 8.
    Chagas-Neto TC, Chaves GM, Colombo AL (2008) Update on the genus Trichosporon. Mycopathologia 166(3):121–132CrossRefGoogle Scholar
  9. 9.
    Pottier I, Gente S, Vernoux JP, Gueguen M (2008) Safety assessment of dairy microorganisms: Geotrichum candidum. Int J Food Microbiol 126(3):327–332CrossRefGoogle Scholar
  10. 10.
    Chakrabarti A (2005) Microbiology of systemic fungal infections. J Postgrad Med 51(Suppl 1):S16–S20Google Scholar
  11. 11.
    Richardson MD (2005) Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56(Suppl 1):i5–i11CrossRefGoogle Scholar
  12. 12.
    Stetzenbach LD (2009) Airborne Infectious Microorganisms. In: Moselio S (ed) Encyclopedia of Microbiology, 3rd edn. Academic Press, Oxford, p 175–182Google Scholar
  13. 13.
    Tibbett M, Carter DO (2003) Mushrooms and taphonomy: the fungi that mark woodland graves. Mycologist 17(1):20–22CrossRefGoogle Scholar
  14. 14.
    Hitosugi M, Ishii K, Yaguchi T, Chigusa Y, Kurosu A, Kido M, Nagai T, Tokudome S (2006) Fungi can be a useful forensic tool. Leg Med (Tokyo) 8(4):240–242CrossRefGoogle Scholar
  15. 15.
    Ishii K, Hitosugi M, Kido M, Yaguchi T, Nishimura K, Hosoya T, Tokudome S (2006) Analysis of fungi detected in human cadavers. Leg Med (Tokyo) 8(3):188–190CrossRefGoogle Scholar
  16. 16.
    Carter DO, Tibbett M (2003) Taphonomic mycota: fungi with forensic potential. J Forensic Sci 48(1):168–171Google Scholar
  17. 17.
    Lakchayapakorn K, Tharasub C, Tiengtip R (2008) Analysis of fungi that grow on formalin-fixed human cadavers at Thammasat University. Thammasat Int J Sci Technol 13(4):25–31Google Scholar
  18. 18.
    Baranowski S, Serr A, Thierauf A, Weinmann W, Grosse Perdekamp M, Wurst FM, Halter CC (2008) In vitro study of bacterial degradation of ethyl glucuronide and ethyl sulphate. Int J Legal Med 122(5):389–393CrossRefGoogle Scholar
  19. 19.
    Helander A, Dahl H (2005) Urinary tract infection: a risk factor for false-negative urinary ethyl glucuronide but not ethyl sulfate in the detection of recent alcohol consumption. Clin Chem 51(9):1728–1730CrossRefGoogle Scholar
  20. 20.
    Moriya F, Hashimoto Y (1997) Distribution of free and conjugated morphine in body fluids and tissues in a fatal heroin overdose: is conjugated morphine stable in postmortem specimens? J Forensic Sci 42(4):736–740Google Scholar
  21. 21.
    Robertson MD, Drummer OH (1995) Postmortem drug metabolism by bacteria. J Forensic Sci 40(3):382–386Google Scholar
  22. 22.
    Skopp G (2004) Preanalytic aspects in postmortem toxicology. Forensic Sci Int 142(2–3):75–100CrossRefGoogle Scholar
  23. 23.
    Yajima D, Motani H, Kamei K, Sato Y, Hayakawa M, Iwase H (2006) Ethanol production by Candida albicans in postmortem human blood samples: effects of blood glucose level and dilution. Forensic Sci Int 164(2–3):116–121CrossRefGoogle Scholar
  24. 24.
    Martinez-Ramirez JA, Voigt K, Peters FT (2012) Studies on the metabolism of five model drugs by fungi colonizing cadavers using LC-ESI-MS/MS and GC-MS analysis. Anal Bioanal Chem 404(5):1339–1359CrossRefGoogle Scholar
  25. 25.
    O'Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90(3):465–493CrossRefGoogle Scholar
  26. 26.
    Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10CrossRefGoogle Scholar
  27. 27.
    Houbraken J, Lopez-Quintero CA, Frisvad JC, Boekhout T, Theelen B, Franco-Molano AE, Samson RA (2011) Penicillium araracuarense sp. nov., Penicillium elleniae sp. nov., Penicillium penarojense sp. nov., Penicillium vanderhammenii sp. nov. and Penicillium wotroi sp. nov., isolated from leaf litter. Int J Syst Evol Microbiol 61(Pt 6):1462–1475CrossRefGoogle Scholar
  28. 28.
    Perrone G, Stea G, Epifani F, Varga J, Frisvad JC, Samson RA (2011) Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biol 115(11):1138–1150CrossRefGoogle Scholar
  29. 29.
    Houbraken J, Frisvad JC, Samson RA (2011) Fleming's penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2(1):87–95CrossRefGoogle Scholar
  30. 30.
    Jurjevic Z, Peterson SW, Horn BW (2012) Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 3(1):59–79CrossRefGoogle Scholar
  31. 31.
    Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera G, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EB, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovács GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-Ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SS, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FO, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D, Consortium FB (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109(16):6241–6246CrossRefGoogle Scholar
  32. 32.
    O'Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7(1):103–116CrossRefGoogle Scholar
  33. 33.
    Skouboe P, Frisvad JC, Taylor JW, Lauritsen D, Boysen M, Rossen L (1999) Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycol Res 103:873–881CrossRefGoogle Scholar
  34. 34.
    Bridge PD, Roberts PJ, Spooner BM, Panchal G (2003) On the unreliability of published DNA sequences. New Phytol 160(1):43–48CrossRefGoogle Scholar
  35. 35.
    Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Koljalg U (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1:e59CrossRefGoogle Scholar
  36. 36.
    Bidartondo MI (2008) Preserving accuracy in GenBank. Science 319(5870):1616CrossRefGoogle Scholar
  37. 37.
    Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20(9):2380CrossRefGoogle Scholar
  38. 38.
    Walther GJP, Alastruey-Izquierdo A, Wrzosek M, Rodriguez-Tudela JL, Dolatabadi S, Arunaloke Chakrabarti G, de Hoog S (2013) DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia 30:11–47CrossRefGoogle Scholar
  39. 39.
    Morris JA, Harrison LM, Partridge SM (2006) Postmortem bacteriology: a re-evaluation. J Clin Pathol 59(1):1–9CrossRefGoogle Scholar
  40. 40.
    Dolan CT, Brown AL, Ritts RE (1971) Microbiological examination of postmortem tissues. Arch Pathol 92(3):206–211Google Scholar
  41. 41.
    Thorn JL, Gilchrist KB, Sobonya RE, Gaur NK, Lipke PN, Klotz SA (2010) Postmortem candidaemia: marker of disseminated disease. J Clin Pathol 63(4):337–340CrossRefGoogle Scholar
  42. 42.
    Sidrim JJC, Moreira RE, Cordeiro RA, Rocha MFG, Caetano EP, Monteiro AJ, Brilhante RSN (2010) Fungal microbiota dynamics as a postmortem investigation tool: focus on Aspergillus, Penicillium and Candida species. J Appl Microbiol 108(5):1751–1756CrossRefGoogle Scholar
  43. 43.
    MIyake MOM (1967) A statistical survey of deep fungus infection in Japan. Acta Pathol Jpn 17(3):401–415Google Scholar
  44. 44.
    Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61(4):1323–1330Google Scholar
  45. 45.
    Hong SB, Go SJ, Shin HD, Frisvad JC, Samson RA (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97(6):1316–1329CrossRefGoogle Scholar
  46. 46.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, vol 38. In: Ma I, Gelfand D, Jj S, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jorge A. Martínez-Ramírez
    • 1
    • 2
  • Juliane Strien
    • 1
  • Juliane Sanft
    • 1
  • Gita Mall
    • 1
  • Grit Walther
    • 3
    • 4
  • Frank T. Peters
    • 1
    Email author
  1. 1.Institute of Forensic MedicineJena University HospitalJenaGermany
  2. 2.Department of PharmacyNational UniversityBogotá D.C.Colombia
  3. 3.Institute of Microbiology, Department of Microbiology and Molecular BiologyUniversity of JenaJenaGermany
  4. 4.Leibniz-Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute, Jena Microbial Resource CollectionJenaGermany

Personalised recommendations