Analytical and Bioanalytical Chemistry

, Volume 405, Issue 25, pp 8185–8195 | Cite as

Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS

  • Katrin Loeschner
  • Jana Navratilova
  • Carsten Købler
  • Kristian Mølhave
  • Stephan Wagner
  • Frank von der Kammer
  • Erik H. Larsen
Research Paper


A method of analysis of silver nanoparticles (AgNPs) in chicken meat was developed. The homogenized chicken meat sample, which was spiked with AgNPs, was subjected to enzymolysis by Proteinase K for 40 min at 37 °C. Transmission electron microscopy and inductively coupled plasma mass spectrometry (ICP-MS) in single particle mode were used to characterize the number-based size distribution of AgNPs in the meat digestate. Because similar size distributions were found in the meat digestate and in the aqueous suspension of AgNPs used for spiking the meat, it was shown that no detectable dissolution of the AgNPs took place during the sample preparation stage. The digestate was injected into the asymmetric flow field flow fractionation (AF4) -ICP-MS system, which enabled fractionation of nanoparticles from the remaining meat matrix, and resulted in one large peak in the fractograms as well as two smaller peaks eluting close to the void volume. The recovery of silver contained in the large AgNP peak was around 80 %. Size determination of AgNPs in the meat matrix, based on external size calibration of the AF4 channel, was hampered by non-ideal (early elution) behavior of the AgNPs. Single particle ICP-MS was applied for determination of the number-based particle size distribution of AgNPs in collected fractions. The presented work describes for the first time the coupling of AF4 and ICP-MS for AgNP separation in a food matrix.


Nanoparticles Silver Food Field flow fractionation Single particle ICP-MS Enzymatic digestion 



We thank the Core Facility for Integrated Microscopy (CFIM) at the University of Copenhagen for providing access to the electron microscopes. Further, we thank Thermo Fisher Scientific for providing the iCAP Q instrument. The work leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 245162.

Supplementary material

216_2013_7228_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1402 kb)


  1. 1.
    von der Kammer F, Legros S, Larsen EH, Loeschner K, Hofmann T (2011) Trends Anal Chem 30:425–436CrossRefGoogle Scholar
  2. 2.
    Dubascoux S, Le Hecho I, Hassellöv M, Von Der Kammer F, Potin Gautier M, Lespes G (2010) J Anal At Spectrom 25:613–623CrossRefGoogle Scholar
  3. 3.
    Elzey S, Grassian V (2010) J Nanoparticle Res 12:1945–1958CrossRefGoogle Scholar
  4. 4.
    Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM, Ranville JF, Steevens J (2011) J Chromatogr 1218:4219–4225CrossRefGoogle Scholar
  5. 5.
    Deering C, Tadjiki S, Assemi S, Miller J, Yost G, Veranth J (2008) Particle Fibre Toxicol 5:18CrossRefGoogle Scholar
  6. 6.
    Tadjiki S, Assemi S, Deering CE, Veranth JM, Miller JD (2009) J Nanoparticle Res 11:981–988CrossRefGoogle Scholar
  7. 7.
    Contado C, Pagnoni A (2008) Anal Chem 80:7594–7608CrossRefGoogle Scholar
  8. 8.
    Nischwitz V, Goenaga-Infante H (2012) J Anal At Spectrom 27:1084–1092CrossRefGoogle Scholar
  9. 9.
    Ludes B, Quantin S, Coste M, Mangin P (1994) Int J Leg Med 107:37–41CrossRefGoogle Scholar
  10. 10.
    Yu C, Penn LD, Hollembaek J, Li W, Cohen LH (2004) Anal Chem 76:1761–1767CrossRefGoogle Scholar
  11. 11. Woodrow Wilson International Centre for Scholars, Project on Emerging Nanotechnologies, Consumer Products Inventory of Nanotechnology Products. 10-3-2011
  12. 12.
    Loeschner K, Navratilova J, Legros S, Wagner S, Grombe R, Snell J, von der Kammer F, Larsen EH (2013) J Chromatogr A 1272:116–125CrossRefGoogle Scholar
  13. 13.
    Goetz NV, Fabricius L, Glaus R, Weitbrecht V, Guenther D, Hungerbuehler K (2013) Food Addit Contam: Part A Chem Anal Control Expo Risk Assess 30:612–620CrossRefGoogle Scholar
  14. 14.
    Laborda F, Jiménez-Lamana J, Bolea E, Castillo JR (2011) J Anal At Spectrom 26:1362–1371CrossRefGoogle Scholar
  15. 15.
    Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF (2012) J Anal At Spectrom 27:1131–1142CrossRefGoogle Scholar
  16. 16.
    Tuoriniemi J, Cornelis G, Hassellöv M (2012) Anal Chem 84:3965–3972CrossRefGoogle Scholar
  17. 17.
    Degueldre C, Favarger PY (2003) Colloids Surf A Physicochem Eng Asp 217:137–142CrossRefGoogle Scholar
  18. 18.
    Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF (2012) Anal Chem 84:4633CrossRefGoogle Scholar
  19. 19.
    Gimbert LJ, Haygarth PM, Beckett R, Worsfold PJ (2005) Environ Sci Technol 39:1731–1735CrossRefGoogle Scholar
  20. 20.
    EC (European Commission) (2011) Off J Eur Union 275:38–40Google Scholar
  21. 21.
    Liu J, Wang Z, Liu FD, Kane AB, Hurt RH (2012) ACS Nano 6:9887–9899CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Katrin Loeschner
    • 1
  • Jana Navratilova
    • 1
  • Carsten Købler
    • 2
  • Kristian Mølhave
    • 2
  • Stephan Wagner
    • 3
  • Frank von der Kammer
    • 3
  • Erik H. Larsen
    • 1
  1. 1.Division of Food Chemistry, National Food InstituteTechnical University of DenmarkSøborgDenmark
  2. 2.Department of Micro- and Nanotechnology, DTU NanotechTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Department of Environmental GeosciencesUniversity of ViennaViennaAustria

Personalised recommendations