Analytical and Bioanalytical Chemistry

, Volume 406, Issue 4, pp 1029–1038 | Cite as

Novel sheathless CE-MS interface as an original and powerful infusion platform for nanoESI study: from intact proteins to high molecular mass noncovalent complexes

  • Rabah Gahoual
  • Jean-Marc Busnel
  • Philippe Wolff
  • Yannis Nicolas François
  • Emmanuelle Leize-Wagner
Research Paper


Development of nano-electrospray (nanoESI) sources allowed to increase significantly the sensitivity which is often lacking when studying biological noncovalent assemblies. However, the flow rate used to infuse the sample into the mass spectrometer cannot be precisely controlled with nanoESI and the robustness of the system could represent an issue. In this study, we have used a sheathless capillary electrophoresis–mass spectrometry (CESI) prototype as a nanoESI infusion device. The hydrodynamic mobilization of the capillary content was characterized and the ability of the system to generate a stable electrospray under controlled flow rate conditions ranging from 4 up to 900 nL/min was demonstrated. The effect of the infusing flow rate on the detection of an intact model protein analyzed under native conditions was investigated. Results demonstrated a significant increase in sensitivity of 46-fold and a signal-to-noise ratio improvement of nearly 5-fold when using an infusing flow rate from 456.9 down to 13.7 nL/min. The CESI prototype was further used to detect successfully the β ring homodimer in its native conformation. Obtained results were compared with those achieved with conventional ESI. Intensity signals were increased by a factor of 5, while sample consumption decreased 80 times. β ring complexed with the P14 peptide was also studied. Finally, the CESI interface was used to observe the quaternary structure of native hemocyanins from Carcinus maenas crabs; this high molecular complex coexisting under various degrees of complexation and resulting in masses ranging from 445 kDa to 1.34 MDa.


Sheathless capillary electrophoresis Mass spectrometry Noncovalent complexes 



Background electrolyte


Capillary electrophoresis


Sheathless capillary electrophoresis


Electrospray ionization


Hydrofluoric acid


Mass spectrometry


Nano-electrospray ionization



Rabah Gahoual would like to thank the MRT for funding his Ph.D. work. LSMIS would like to thank Beckman Coulter Inc. for lending a prototype capillary electrophoresis system and for their global support, especially Michel Anselme, Hans Dewald and Edna Betgovargez, and Bruker Daltonics Inc. for the loan of a MicroTOFQ MS. The authors would like to acknowledge Dr. Dominique Burnouf (IBMC, Strasbourg) for providing β ring samples and Dr. Frank Zal from Biological Station of Roscoff (France) for hemocyanin samples.


  1. 1.
    Loo JA (1997) Mass Spectrom Rev 16:1–23CrossRefGoogle Scholar
  2. 2.
    Heck AJ, van den Heuvel RH (2004) Mass Spectrom Rev 23:368–389CrossRefGoogle Scholar
  3. 3.
    Sharon M, Robinson CV (2007) Annu Rev Biochem 76:167–193CrossRefGoogle Scholar
  4. 4.
    Benesch JLP, Ruotolo BT, Simmons DA, Barrera NP, Morgner N, Wang L, Saibil HR, Robinson CV (2010) J Struct Bio 172:161–168CrossRefGoogle Scholar
  5. 5.
    Benesch JLP, Aquilina JA, Ruotolo BT, Sobott F, Robinson CV (2006) Chem Biol 13:597–605CrossRefGoogle Scholar
  6. 6.
    Sanglier S, Leize E, Van Dorsselaer A (2003) J Am Soc Mass Spectrom 14:419–429CrossRefGoogle Scholar
  7. 7.
    Greig MJ, Gaus H, Cummins LL, Sasmor H, Griffey RH (1995) J Am Chem Soc 117:10765–10766CrossRefGoogle Scholar
  8. 8.
    Hilton GR, Benesch JLP (2012) J R Soc Interface 9:801–816CrossRefGoogle Scholar
  9. 9.
    Constantopoulos TL, Jackson GS, Enke CG (1999) J Am Soc Mass Spectrom 10:625–634CrossRefGoogle Scholar
  10. 10.
    Sterling HJ, Batchelor JD, Wemmer DE, Williams ER (2010) J Am Soc Mass Spectrom 21:1045–1049CrossRefGoogle Scholar
  11. 11.
    Wilm MS, Mann M (1994) Int J Mass Spectrom Ion Processes 136:167–180CrossRefGoogle Scholar
  12. 12.
    Wilm MS, Mann M (1996) Anal Chem 68:1–8CrossRefGoogle Scholar
  13. 13.
    Touboul D, Maillard L, Grässlin A, Moumne R, Seitz M, Robinson J, Zenobi R (2009) J Am Soc Mass Spectrom 20:303–311CrossRefGoogle Scholar
  14. 14.
    Painter AJ, Jaya N, Basha E, Vierling E, Robinson CV, Benesch JLP (2008) Chem Biol 15:246–253CrossRefGoogle Scholar
  15. 15.
    Moini M (2007) Anal Chem 79:4241–4246CrossRefGoogle Scholar
  16. 16.
    Haselberg R, Ratnayake CK, de Jong GJ, Somsen GW (2010) J Chromatogr A 1217:7605–7611CrossRefGoogle Scholar
  17. 17.
    Faserl K, Sarg B, Kremser L, Lindner H (2011) Anal Chem 83:7297–7305CrossRefGoogle Scholar
  18. 18.
    Busnel JM, Schoenmaker B, Ramautar R, Carrasco-Pancorbo A, Ratnayake C, Feitelson JS, Chapman JD, Deelder AM, Mayoboroda OA (2010) Anal Chem 82:9476–9483CrossRefGoogle Scholar
  19. 19.
    Heemskerk AAM, Busnel JM, Schoenmaker B, Derks RJE, Klychnikov O, Hensbergen PJ, Deelder AM, Mayboroda OA (2012) Anal Chem 84:4552–4559CrossRefGoogle Scholar
  20. 20.
    Wang Y, Fonslow BR, Wong CCL, Nakorchevsky A, Yates JR III (2012) Anal Chem 84:8505–8513CrossRefGoogle Scholar
  21. 21.
    Zhu G, Sun L, Yan X, Dovichi NJ (2013) Anal Chem 85:2569–2573CrossRefGoogle Scholar
  22. 22.
    Heemskerk AAM, Wuhrer M, Busnel JM, Koeleman CAM, Selman MHJ, Vidarsson G, Kapur R, Schoenmaker B, Derks RJE, Deelder AM, Mayboroda OA (2013) Electrophoresis 34:383–387CrossRefGoogle Scholar
  23. 23.
    Gahoual R, Burr A, Busnel JM, Kuhn L, Hammann P, Beck A, François YN (2013) mAbs 5:479–490.Google Scholar
  24. 24.
    Ramautar R, Busnel JM, Deelder AM, Mayoboroda OA (2012) Anal Chem 84:885–892CrossRefGoogle Scholar
  25. 25.
    Haselberg R, Harmsen S, Dolman MEM, de Jong GJ, Kok RJ, Somsen GW (2011) Anal Chim Acta 698:77–83CrossRefGoogle Scholar
  26. 26.
    Haselberg R, de Jong GJ, Somsen GW (2013) Anal Chem 85:2289–2296CrossRefGoogle Scholar
  27. 27.
    Wolff P, Olieric V, Briand JP, Chaloin O, Dejaegere A, Dumas P, Ennifar E, Guichard G, Wagner J, Burnouf DY (2011) J Med Chem 54:4627–4637CrossRefGoogle Scholar
  28. 28.
    Schmidt A, Karas M, Dülcks T (2003) J Am Soc Mass Spectrom 14:492–500CrossRefGoogle Scholar
  29. 29.
    Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RPP, Dumas P (2004) J Mol Biol 335:1187–1197CrossRefGoogle Scholar
  30. 30.
    Baclayon M, Shoemaker GK, Uetrecht C, Crawford SE, Estes MK, Venkataram Prasad BV, Heck AJR, Wuite GJL, Roos WH (2011) Nano Lett 11:4865–4869CrossRefGoogle Scholar
  31. 31.
    El-Faramawy A, Siu KWM, Thomson BA (2005) J Am Soc Mass Spectrom 16:1702–1707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rabah Gahoual
    • 1
  • Jean-Marc Busnel
    • 2
  • Philippe Wolff
    • 3
  • Yannis Nicolas François
    • 1
  • Emmanuelle Leize-Wagner
    • 1
  1. 1.Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), CNRS-UMR 7140Université de StrasbourgStrasbourgFrance
  2. 2.Beckman Coulter Inc.BreaUSA
  3. 3.Architecture et Réactivité de l’ARNInstitut de Biologie Moléculaire et Cellulaire, Université de StrasbourgStrasbourgFrance

Personalised recommendations