Analytical and Bioanalytical Chemistry

, Volume 405, Issue 24, pp 7841–7849 | Cite as

An electrochemical magneto immunosensor (EMIS) for the determination of paraquat residues in potato samples

  • Raul Garcia-Febrero
  • Enrique Valera
  • Alejandro Muriano
  • M.-Isabel Pividori
  • Francisco Sanchez-Baeza
  • M.-Pilar Marco
Research Paper
Part of the following topical collections:
  1. Rapid Detection in Food and Feed


An electrochemical magneto immunosensor for the detection of low concentrations of paraquat (PQ) in food samples has been developed and its performance evaluated in a complex sample such as potato extracts. The immunosensor presented uses immunoreagents specifically developed for the recognition of paraquat, a magnetic graphite–epoxy composite (m-GEC) electrode and biofunctionalized magnetic micro-particles (PQ1-BSAMP) that allow reduction of the potential interferences caused by the matrix components. The amperometric signal is provided by an enzymatic probe prepared by covalently linking an enzyme to the specific antibodies (Ab198-cc-HRP). The use of hydroquinone, as mediator, allows recording of the signal at a low potential, which also contributes to reducing the background noise potentially caused by the sample matrix. The immunocomplexes formed on top of the modified MP are easily captured by the m-GEC, which acts simultaneously as transducer. PQ can be detected at concentrations as low as 0.18 ± 0.09 μg L−1. Combined with an efficient extraction procedure, PQ residues can be directly detected and accurately quantified in potato extracts without additional clean-up or purification steps, with a limit of detection (90 % of the maximum signal) of 2.18 ± 2.08 μg kg−1, far below the maximum residue level (20 μg kg−1) established by the EC. The immunosensor presented here is suitable for on-site analysis. Combined with the use of magnetic racks, multiple samples can be run simultaneously in a reasonable time.


Electrochemical immunosensor Enzyme probe Paraquat Pesticide residues Potato Food safety 



E. Valera thank the support from the Spanish Government (Ministerio de Ciencia e Innovación) for a Juan de la Cierva fellowship. This work has been supported by the European Community (FP7-KBBE-211326). CIBER-BBN is an initiative funded by VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, and CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The AMR group (nowadays Nanobiotechnology for Diagnostics (Nb4D) group) is a consolidated Grup de Recerca de la Generalitat de Catalunya and has a support from the department d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (expedient 2009 SER 1343).


  1. 1.
    Hutson DH, Roberts TR (1987) Progress in pesticide biochemistry and toxicology, vol. 6: Herbicides. Wiley, Chichester, 372 pGoogle Scholar
  2. 2.
    (TOXNET) TDN (1995) Hazardous substances data bank. US National Library of Medicine, BethesdaGoogle Scholar
  3. 3.
    Fernández M, Ibáñez M, Picó Y, Mañes J (1998) Spatial and temporal trends of paraquat, diquat, and difenzoquat contamination in water from marsh areas of the Valencian community (Spain). Arch Environ Contam Toxicol 35(3):377–384. doi: 10.1007/s002449900391 CrossRefGoogle Scholar
  4. 4.
    Philbey AW, Morton AG (2001) Paraquat poisoning in sheep from contaminated water. Aust Vet J 79(12):842–843CrossRefGoogle Scholar
  5. 5.
    Taylor PJ, Salm P, Pillans PI (2001) A detection scheme for paraquat poisoning: validation and a five-year experience in Australia. J Anal Toxicol 25(6):456–460CrossRefGoogle Scholar
  6. 6.
    Chester G, Woollen BH (1982) Studies of the occupational exposure of Malaysian plantation workers to paraquat. Br J Ind Med 39(1):23–33Google Scholar
  7. 7.
    Fukushima T, Tanaka K, Lim H, Moriyama M (2002) Mechanism of cytotoxicity of paraquat. Environ Health Prev Med 7(3):89–94. doi: 10.1265/ehpm.2002.89 CrossRefGoogle Scholar
  8. 8.
    Tawara T, Fukushima T, Hojo N, Isobe A, Shiwaku K, Setogawa T, Yamane Y (1996) Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol 70(9):585–589. doi: 10.1007/s002040050316 CrossRefGoogle Scholar
  9. 9.
    Yang C-J, Lin J-L, Lin-Tan D-T, Weng C-H, Hsu C-W, Lee S-Y, Lee S-H, Chang C-M, Lin W-R, Yen T-H (2012) Spectrum of toxic hepatitis following intentional paraquat ingestion: analysis of 187 cases. Liver Int 32(9):1400–1406. doi: 10.1111/j.1478-3231.2012.02829.x CrossRefGoogle Scholar
  10. 10.
    Lee P-C, Bordelon Y, Bronstein J, Ritz B (2012) Traumatic brain injury, paraquat exposure, and their relationship to Parkinson disease. Neurology 79(20):2061–2066. doi: 10.1212/WNL.0b013e3182749f28 CrossRefGoogle Scholar
  11. 11.
    Hsu CW, Lin JL, Lin-Tan DT, Chen KH, Yen TH, Wu MS, Lin SC (2012) Early hemoperfusion may improve survival of severely paraquat-poisoned patients. Plos One 7(10):e48397CrossRefGoogle Scholar
  12. 12.
    Cha ES, Lee YK, Moon EK, Kim YB, Lee Y-J, Jeong WC, Cho EY, Lee IJ, Hur J, Ha M, Lee WJ (2012) Paraquat application and respiratory health effects among South Korean farmers. Occup Environ Med 69(6):398–403. doi: 10.1136/oemed-2011-100244 CrossRefGoogle Scholar
  13. 13.
    Yadav S, Gupta SP, Srivastava G, Srivastava PK, Singh MP (2012) Role of secondary mediators in caffeine-mediated neuroprotection in Maneb- and Paraquat-induced Parkinson’s disease phenotype in the mouse. Neurochem Res 37(4):875–884. doi: 10.1007/s11064-011-0682-0 CrossRefGoogle Scholar
  14. 14.
    Fahim MA, Nemmar A, Safa S, Adem A, Hasan MY (2012) Paraquat exposure induces dorsiflexor muscle dysfunction and dopaminergic modification resembling Parkinson’s disease. FASEB J 26Google Scholar
  15. 15.
    Desplats P, Patel P, Kosberg K, Mante M, Patrick C, Rockenstein E, Fujita M, Hashimoto M, Masliah E (2012) Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease. Mol Neurodegener 7:49CrossRefGoogle Scholar
  16. 16.
    Brent J, Schaeffer TH (2011) Systematic review of Parkinsonian syndromes in short- and long-term survivors of paraquat poisoning. J Occup Environ Med 53(11):1332–1336. doi: 10.1097/JOM.0b013e318233775d CrossRefGoogle Scholar
  17. 17.
    Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ 17(7):1115–1125. doi: 10.1038/cdd.2009.217 CrossRefGoogle Scholar
  18. 18.
    Podder B, Kim Y-S, Zerin T, Song H-Y (2012) Antioxidant effect of silymarin on paraquat-induced human lung adenocarcinoma A549 cell line. Food Chem Toxicol 50(9):3206–3214. doi: 10.1016/j.fct.2012.06.007 CrossRefGoogle Scholar
  19. 19.
    Jian X, Ruan Y, Guo G, Zhang Y (2008) Anti-TGF-[beta]1 antibody: an effective treatment for lung injury caused by paraquat in the future. Med Hypotheses 70(3):705CrossRefGoogle Scholar
  20. 20.
    Kim KS, Suh GJ, Kwon WY, Kwak YH, Lee K, Lee HJ, Jeong KY, Lee MW (2012) Antioxidant effects of selenium on lung injury in paraquat intoxicated rats. Clin Toxicol 50(8):749–753. doi: 10.3109/15563650.2012.708418 CrossRefGoogle Scholar
  21. 21.
    Novaes RD, Goncalves RV, Santos Marques DC, MdC C, MdC GP, Viana Leite JP, dos Santos Costa Maldonado IR (2012) Effect of bark extract of Bathysa cuspidata on hepatic oxidative damage and blood glucose kinetics in rats exposed to paraquat. Toxicol Pathol 40(1):62–70. doi: 10.1177/0192623311425059 CrossRefGoogle Scholar
  22. 22.
    Commission TE (2011) Commission Regulation (EU) No 520/2011. 520/2011Google Scholar
  23. 23.
    Peeters MC, Defloor I, Coosemans J, Delcour JA, Ooms L, Deliever R, De Vos D (2001) Simple ion chromatographic method for the determination of chlormequat residues in pears. J Chromatogr A 920(1–2):255–259. doi: 10.1016/S0021-9673(01)00836-6 Google Scholar
  24. 24.
    Startin JR, Hird SJ, Sykes MD, Taylor JC, Hill ARC (1999) Determination of residues of the plant growth regulator chlormequat in pears by ion-exchange high performance liquid chromatography–electrospray mass spectrometry. Analyst 124(7):1011–1015CrossRefGoogle Scholar
  25. 25.
    Guijarro EC, Yáñez-Sedeño P, Diéz LMP (1987) Determination of paraquat by flow-injection spectrophotometry. Anal Chim Acta 199(0):203–208. doi: 10.1016/S0003-2670(00)82816-0 CrossRefGoogle Scholar
  26. 26.
    Kolberg DIS, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, Mol HGJ (2012) Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses. Anal Bioanal Chem 404:2465–2474. doi: 10.1007/s00216-012-6340-9 CrossRefGoogle Scholar
  27. 27.
    Wang Z, Wang Z, Xing J (2011) The quantitative analysis of paraquat in biological samples by liquid chromatography–electrospray ionization–mass spectrometry. J Anal Toxicol 35(1):23–27CrossRefGoogle Scholar
  28. 28.
    Robb CS, Eitzer BD (2011) The direct analysis of diquat and paraquat in lake water samples by per aqueous liquid chromatography. Lc Gc North America 29(1):54–59Google Scholar
  29. 29.
    Whitehead RD Jr, Montesano MA, Jayatilaka NK, Buckley B, Winnik B, Needham LL, Barr DB (2010) Method for measurement of the quaternary amine compounds paraquat and diquat in human urine using high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 878(27):2548–2553CrossRefGoogle Scholar
  30. 30.
    Castro R, Moyano E, Galceran MT (2001) Determination of quaternary ammonium pesticides by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 914(1–2):111–121. doi: 10.1016/S0021-9673(01)00523-4 Google Scholar
  31. 31.
    Baeck S, Shin Y, Chung H, Pyo M (2007) Comparison study of the extraction methods of paraquat in post-mortem human blood samples. Arch Pharm Res 30(2):235–239. doi: 10.1007/bf02977699 CrossRefGoogle Scholar
  32. 32.
    Esparza X, Moyano E, Galceran MT (2009) Analysis of chlormequat and mepiquat by hydrophilic interaction chromatography coupled to tandem mass spectrometry in food samples. J Chromatogr A 1216(20):4402–4406. doi: 10.1016/j.chroma.2009.03.037 CrossRefGoogle Scholar
  33. 33.
    Winnik B, Barr DB, Thiruchelvam M, Montesano MA, Richfield EK, Buckley B (2009) Quantification of Paraquat, MPTP, and MPP+ in brain tissue using microwave-assisted solvent extraction (MASE) and high-performance liquid chromatography–mass spectrometry. Anal Bioanal Chem 395(1):195–201. doi: 10.1007/s00216-009-2929-z CrossRefGoogle Scholar
  34. 34.
    Núñez O, Moyano E, Galceran MT (2002) Capillary electrophoresis–mass spectrometry for the analysis of quaternary ammonium herbicides. J Chromatogr A 974(1–2):243–255Google Scholar
  35. 35.
    Núñez O, Moyano E, Puignou L, Galceran MT (2001) Sample stacking with matrix removal for the determination of paraquat, diquat and difenzoquat in water by capillary electrophoresis. J Chromatogr A 912(2):353–361CrossRefGoogle Scholar
  36. 36.
    da Silva OB, Machado SAS (2012) Evaluation of the detection and quantification limits in electroanalysis using two popular methods: application in the case study of paraquat determination. Analytical Methods 4(8):2348–2354. doi: 10.1039/c2ay25111f CrossRefGoogle Scholar
  37. 37.
    Goecer M, Hoferer K, Zipfel J, Spangenberg B (2009) A new TLC method for quantification of paraquat, diquat, difenzoquat, mepiquat and chloromequat in water. J Planar Chromatogr-Mod 22(1):59–63. doi: 10.1556/jpc.22.2009.1.11 CrossRefGoogle Scholar
  38. 38.
    Gao R, Choi N, Chang S-I, Kang SH, Song JM, Cho SI, Lim DW, Choo J (2010) Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal Chim Acta 681(1–2):87–91. doi: 10.1016/j.aca.2010.09.036 CrossRefGoogle Scholar
  39. 39.
    Podola B, Melkonian M (2005) Selective real-time herbicide monitoring by an array chip biosensor employing diverse microalgae. J Appl Phycol 17(3):261–271CrossRefGoogle Scholar
  40. 40.
    Lee JH, Gu MB (2005) An integrated mini biosensor system for continuous water toxicity monitoring. Biosens Bioelectron 20(9):1744–1749CrossRefGoogle Scholar
  41. 41.
    Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21(3):500–507CrossRefGoogle Scholar
  42. 42.
    Kim BC, Youn CH, Ahn JM, Gu MB (2005) Screening of target-specific stress-responsive genes for the development of cell-based biosensors using a DNA microarray. Anal Chem 77(24):8020–8026CrossRefGoogle Scholar
  43. 43.
    Strachan G, Capel S, Maciel H, Porter AJR, Paton GI (2002) Application of cellular and immunological biosensor techniques to assess herbicide toxicity in soils. Eur J Soil Sci 53(1):37–44CrossRefGoogle Scholar
  44. 44.
    Spinks CA, Wang B, Mills ENC, Morgan MRA (1999) Development of an ELISA for paraquat; improvement of antibody characteristics by reversed affinity chromatography. Analyst 124(6):847–850CrossRefGoogle Scholar
  45. 45.
    Mallat E, Barzen C, Abuknesha R, Gauglitz G, Barcelo D (2001) Fast determination of paraquat residues in water by an optical immunosensor and validation using capillary electrophoresis-ultraviolet detection. Anal Chim Acta 427(2):165–171CrossRefGoogle Scholar
  46. 46.
    Mastichiadis C, Kakabakos SE, Christofidis I, Koupparis MA, Willetts C, Misiakos K (2002) Simultaneous determination of pesticides using a four-band disposable optical capillary immunosensor. Anal Chem 74(23):6064–6072. doi: 10.1021/ac020330x CrossRefGoogle Scholar
  47. 47.
    Abuknesha RA, Luk C (2005) Paraquat enzyme-immunoassays in biological samples: assessment of the effects of hapten–protein bridge structures on assay sensitivity. Analyst 130(6):956–963. doi: 10.1039/b418087a CrossRefGoogle Scholar
  48. 48.
    Niewola Z, Hayward C, Symington BA, Robson RT (1985) Quantitative estimation of paraquat by an enzyme linked immunosorbent assay using a monoclonal antibody. Clinica Chimica Acta 148(2):149–156CrossRefGoogle Scholar
  49. 49.
    Van Emon J, Hammock B, Seiber JN (1986) Enzyme-linked immunosorbent assay for paraquat and its application to exposure analysis. Anal Chem 58(8):1866–1873. doi: 10.1021/ac00121a057 CrossRefGoogle Scholar
  50. 50.
    Selisker MY, Herzog DP, Erber RD, Fleeker JR, Itak JA (1995) Determination of paraquat in fruits and vegetables by a magnetic particle based enzyme-linked immunosorbent assay. J Agric Food Chem 43(2):544–547. doi: 10.1021/jf00050a053 CrossRefGoogle Scholar
  51. 51.
    Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26(4):1178–1194CrossRefGoogle Scholar
  52. 52.
    Raz SR (2010) On-chip food safety monitoring: multi-analyte screening with imaging surface plasmon resonance-based biosensor. Thesis Wageningen University, Wageningen, NL, 174 ppGoogle Scholar
  53. 53.
    Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89. doi: 10.1016/j.tibtech.2008.10.010 CrossRefGoogle Scholar
  54. 54.
    Piliarik M, Parova L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24(5):1399–1404. doi: 10.1016/j.bios.2008.08.012 CrossRefGoogle Scholar
  55. 55.
    Haasnoot W (2009) Multiplex biosensor immunoassays for antibiotics in the food chain. Multiplex biosensor immunoassays for antibiotics in the food chain. Doctoral Thesis, Wageningen University & Research Centre, 240 ppGoogle Scholar
  56. 56.
    Tudorache M, Bala C (2007) Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal Bioanal Chem 388(3):565–578. doi: 10.1007/s00216-007-1293-0|ISSN 1618–2642 CrossRefGoogle Scholar
  57. 57.
    Bacigalupo MA, Meroni G, Mirasoli M, Parisi D, Longhi R (2004) Ultrasensitive quantitative determination of paraquat: application to river, ground, and drinking water analysis in an agricultural area. J Agric Food Chem 53(2):216–219. doi: 10.1021/jf048746u CrossRefGoogle Scholar
  58. 58.
    Van Emon J, Seiber J, Hammock B (1987) Application of an enzyme-linked immunosorbent assay (ELISA) to determine paraquat residues in milk, beef, and potatoes. Bull Environ Contam Toxicol 39(3):490–497CrossRefGoogle Scholar
  59. 59.
    Garcia-Febrero R, Salvador JP, Sanchez-Baeza F, Marco MP. (2013) A immunochemical high-throughput screening procedure for determination of paraquat residues in food samples. (submitted)Google Scholar
  60. 60.
    Hanrahan G, Patil DG, Wang J (2004) Electrochemical sensors for environmental monitoring: design, development and applications. J Environ Monit 6(8):657–664CrossRefGoogle Scholar
  61. 61.
    Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2005) Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal Lett 37(5):789–830CrossRefGoogle Scholar
  62. 62.
    Lojou É, Bianco P (2006) Application of the electrochemical concepts and techniques to amperometric biosensor devices. J Electroceram 16(1):79–91. doi: 10.1007/s10832-006-2365-9 CrossRefGoogle Scholar
  63. 63.
    Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892CrossRefGoogle Scholar
  64. 64.
    Xu Z, Chen X, Dong S (2006) Electrochemical biosensors based on advanced bioimmobilization matrices. TrAC Trends Anal Chem 25(9):899–908CrossRefGoogle Scholar
  65. 65.
    Valera E, Muriano A, Pividori MI, Sánchez-Baeza F, Marco MP (2013) Development of a Coulombimetric immunosensor based on specific antibodies labeled with CdS nanoparticles for sulfonamide antibiotic residues analysis and its application to honey samples. Biosens Bioelectron 43:211–217CrossRefGoogle Scholar
  66. 66.
    Zacco E, Adrian J, Galve R, Marco M-P, Alegret S, Pividori MI (2007) Electrochemical magneto immunosensing of antibiotics residues in milk. Biosens Bioelectron 22:2184–2191CrossRefGoogle Scholar
  67. 67.
    Zacco E, Pividori MI, Alegret S, Galve R, Marco M-P (2006) Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Anal Chem 78(6):1780–1788CrossRefGoogle Scholar
  68. 68.
    Muriano A, Chabottaux V, Pinacho DG, Diserens J-M, Granier B, Stead S, Sanchez-Baeza F, Pividori MI, Marco MP (submitted to this issue) A portable electrochemical magneto immunosensor (EMIS) for detection of sulfonamide antibiotics in honey. Anal Bioanal Chem (in press)Google Scholar
  69. 69.
    Müller-Schulte D, Schmitz-Rode T, Borm P (2005) Ultra-fast synthesis of magnetic and luminescent silica beads for versatile bioanalytical applications. J Magn Magn Mater 293(1):135–143CrossRefGoogle Scholar
  70. 70.
    Yeung SW, Hsing IM (2006) Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications. Biosens Bioelectron 21(7):989–997CrossRefGoogle Scholar
  71. 71.
    Centi S, Tombelli S, Minunni M, Mascini M (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79(4):1466–1473. doi: 10.1021/ac061879p CrossRefGoogle Scholar
  72. 72.
    Abuknesha RA, Luk CY, Griffith HHM, Maragkou A, Iakovaki D (2005) Efficient labelling of antibodies with horseradish peroxidase using cyanuric chloride. J Immunol Methods 306(1–2):211–217CrossRefGoogle Scholar
  73. 73.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254CrossRefGoogle Scholar
  74. 74.
    Williams E, Pividori MI, Merkoci A, Forster RJ, Alegret S (2003) Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode. Biosens Bioelectron 19:165–175CrossRefGoogle Scholar
  75. 75.
    Maggio ET (1981) Enzyme-immunoassay, 2nd edn. CRC, Boca RatonGoogle Scholar
  76. 76.
    Lutaladio N, Castaldi L (2009) Potato: the hidden treasure. J Food Compos Anal 22(6):491–493. doi: 10.1016/j.jfca.2009.05.002 CrossRefGoogle Scholar
  77. 77.
    Burlingame B, Mouillé B, Charrondière UR (2009) Review: nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J Food Compos Anal 22:494–502CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raul Garcia-Febrero
    • 1
    • 2
  • Enrique Valera
    • 2
    • 1
  • Alejandro Muriano
    • 1
    • 2
  • M.-Isabel Pividori
    • 3
  • Francisco Sanchez-Baeza
    • 1
    • 2
  • M.-Pilar Marco
    • 1
    • 2
  1. 1.Nanobiotechnology for Diagnostics (Nb4D) groupIQAC-CSICBarcelonaSpain
  2. 2.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)BarcelonaSpain
  3. 3.Grup de Sensors i BiosensorsUnitat de Química AnalíticaBarcelonaSpain

Personalised recommendations