Skip to main content
Log in

Temperature-dependent size exclusion chromatography for the in situ investigation of dynamic bonding/debonding reactions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polymers capable of dynamic bonding/debonding reactions are of great interest in modern day research. Potential applications can be found in the fields of self-healing materials or printable networks. Since temperature is often used as a stimulus for triggering reversible bonding reactions, an analysis operating at elevated temperatures is very useful for the in situ investigation of the reaction mechanism, as unwanted side effects can be minimized when performing the analyses at the same temperature at which the reactions occur. A temperature-dependent size exclusion chromatographic system (TD SEC) has been optimized for investigating the kinetics of retro Diels−Alder-based depolymerization of Diels−Alder polymers. The changing molecular weight distribution of the analyzed polymers during depolymerization gives valuable quantitative information on the kinetics of the reactions. Adequate data interpretation methods were developed for the correct evaluation of the chromatograms. The results are confirmed by high-temperature dynamic light scattering, thermogravimetric analysis, and time-resolved nuclear magnetic resonance spectroscopy at high temperatures. In addition, the SEC system and column material stability under application conditions were assessed using thermoanalysis methods, infrared spectroscopy, nitrogen physisorption, and scanning electron microscopy. The findings demonstrate that the system is stable and, thus, we can reliably characterize such dynamically bonding/debonding systems with TD SEC.

3D illustration of chromatograms of a polymer after different times of a depolymerization reaction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haining L, Yuan X, Zaisheng C, Jie S (2011) Microporous membrane with temperature-sensitive breathability based on PU/PNIPAAm semi-IPN. J Appl Polym Sci 124:2–8

    Article  Google Scholar 

  2. Zhang S, Yu F (2011) Piezoelectric materials for high temperature sensors. J Am Ceram Soc 94:3153–3170

    Article  CAS  Google Scholar 

  3. Islam A, Yasin T, Bano I, Riaz M (2011) Controlled release of aspirin from pH-sensitive chitosan/poly(vinyl alcohol) hydrogel. J Appl Polym Sci 124:4184–92

    Article  Google Scholar 

  4. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  CAS  Google Scholar 

  5. Wang CH, Sidhu K, Yang T, Zhang J, Shanks R (2012) Interlayer self-healing and toughening of carbon fibre/epoxy composites using copolymer films. Compos Appl Sci Manuf 43:512–518

    Article  CAS  Google Scholar 

  6. Maeda T, Otsuka H, Takahara A (2009) Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog Poly Sci 34:581–604

    Article  CAS  Google Scholar 

  7. Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim 2:1–9

    Article  Google Scholar 

  8. Guimard NK, Oehlenschlaeger KK, Zhou J, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213:131–143

    Article  CAS  Google Scholar 

  9. Kwart H, King K (1968) The reverse Diels–Alder or retrodiene reaction. Chem Rev 68:415–439

    Article  CAS  Google Scholar 

  10. Zhou J, Guimard NK, Inglis AJ, Namazian M, Lin CY, Coote ML, Spyrou E, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Thermally reversible Diels–Alder-based polymerization: an experimental and theoretical assessment. Pol Chem 3:628–639

    Article  CAS  Google Scholar 

  11. Sanyal A (2010) Diels–Alder cycloaddition-cycloreversion: a powerful combo in materials design. Macromol Chem Phys 211:1417–1425

    Article  CAS  Google Scholar 

  12. Park JS, Darlington T, Starr AF, Takahashi K, Riendeau J, Thomas Hahn H (2010) Multiple healing effect of thermally activated self-healing composites based on Diels–Alder reaction. Compos Sci Technol 70:2154–2159

    Article  CAS  Google Scholar 

  13. Froimowicz P, Frey H, Landfester K (2011) Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromol Rapid Commun 32:468–473

    Article  CAS  Google Scholar 

  14. Chung C, Roh Y, Cho S, Kim J (2004) Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem Mater 16:3982–3984

    Article  CAS  Google Scholar 

  15. Pasch H (2001) Recent developments in polyolefin characterization. Macromol Sy 165:91–98

    Article  CAS  Google Scholar 

  16. Cho H, Park S, Ree M, Chang T, Jung JC, Zin WC (2006) High temperature size exclusion chromatography. Macromol Res 14:383–386

    Article  CAS  Google Scholar 

  17. Ginzburg A, Macko T, Dolle V, Brüll R (2011) Characterization of polyolefins by comprehensive high-temperature two-dimensional liquid chromatography (HT 2D-LC). Europ Polym J 47:319–329

    Article  CAS  Google Scholar 

  18. Park S, Cho H, Kim Y, Ahn S, Chang T (2007) Fast size-exclusion chromatography at high temperature. J Chrom A 1157:96–100

    Article  CAS  Google Scholar 

  19. Guimard NK, Ho J, Brandt J, Lin Y, Namazian M, Jan O, Oehlenschlaeger KK, Hilf S, Lederer A, Schmidt FG, Coote ML, Barner-Kowollik C (2013) Harnessing entropy to direct the bonding/debonding of polymer systems based on reversible chemistry. Chem Sci 4:2752–2759

    Article  CAS  Google Scholar 

  20. Li Y, Fan Y, Ma J (2001) The thermal properties of porous polydivinylbenzene beads. React Funct Polym 50:57–65

    Article  Google Scholar 

  21. Straus S, Madorsky SL (1961) Thermal stability of polydivinylbenzene and of copolymers of styrene with divinylbenzene and with trivinylbenzene. J Res Nat Bur Stand A Phys Chem 65A:243–248

    Article  CAS  Google Scholar 

  22. De Santa MLC, Souza MAV, Santos FR, Rubenich LMS, Ferreira MDJF, Sá RMP (2008) Thermogravimetric and spectrometric characterizations of poly(styrene-co-divinylbenzene) containing phosphinic and phosphonic acid groups. Polym Eng Sci 48:1897–1900

    Article  Google Scholar 

  23. Grubisic Z, Rempp P, Benoit H (1967) A universal calibration for gel permeation chromatography. Polym Lett 5:753–759

    Article  Google Scholar 

  24. Socrates G (1980) Infrared characteristic group frequencies. Wiley, Chichester

    Google Scholar 

  25. Grimes BA, Skudas R, Unger KK, Lubda D (2007) Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography. J Chrom A 1144:14–29

    Article  CAS  Google Scholar 

  26. Yao Y, Lenhoff AM (2004) Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography. J Chrom A 1037:273–282

    Article  CAS  Google Scholar 

  27. DePhillips P, Lenhoff AM (2000) Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography. J Chrom A 883:39–54

    Article  CAS  Google Scholar 

  28. Potschka M (1987) Universal calibration of gel permeation chromatography and determination of molecular shape in solution. Anal Biochem 162:47–64

    Article  CAS  Google Scholar 

  29. Renn CN, Synovec RE (1992) Effect of temperature on separation efficiency for high-speed size exclusion chromatography. Anal Chem 64:479–484

    Article  CAS  Google Scholar 

  30. Antia FD, Horvath C (1988) High-performance liquid chromatography at elevated temperatures: examination of conditions for the rapid separation of large molecules. J Chrom 435:1–15

    Article  CAS  Google Scholar 

  31. Greibrokk T, Andersen T (2003) High-temperature liquid chromatography. J Chrom A 1000:743–755

    Article  CAS  Google Scholar 

  32. AgilentTechnologies (2013) Organic GPC/SEC columns product guide

  33. Peterson JD, Vyazovkin S, Wight C a (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784

    Article  CAS  Google Scholar 

  34. Borchard W (1978) Thermodynamic reflections on the course of polymer swelling curves. Europ Polym J 14:661–664

    Article  CAS  Google Scholar 

  35. Cantow MJR, Porter RS, Julian F (1967) Effect of temperature and polymer type on gel permeation chromatography. J Polym Sci A 15:987–991

    Google Scholar 

  36. Oehlenschlaeger KK, Guimard NK, Brandt J, Mueller JO, Lin CY, Hilf S, Lederer A, Coote ML, Schmidt FG, Barner-Kowollik C (2013) Fast and catalyst-free hetero-Diels–Alder chemistry for on demand cyclable bonding/debonding materials. Polym Chem. doi:10.1039/c3py00476g

    Google Scholar 

Download references

Acknowledgments

A.L., J.B., N. G., and C.B.-K. thank Evonik Industries AG for continued financial support and the excellent collaboration. Kerstin Arnhold is acknowledged for help with the thermoanalysis, and Mikhail Malanin for the IR analysis and interpretation, while Viktoria Albrecht is thanked for nitrogen physisorption studies and Hartmut Komber for the NMR measurements. C.B.-K. is grateful for continued support from the Karlsruhe Institute of Technology and the Helmholtz association in its Science and Technology of Nanosystems and BioInterfaces programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albena Lederer.

Additional information

Published in the topical collection Separation and Characterization of Natural and Synthetic Macromolecules with guest editors Albena Lederer and Peter J. Schoenmakers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, J., Guimard, N.K., Barner-Kowollik, C. et al. Temperature-dependent size exclusion chromatography for the in situ investigation of dynamic bonding/debonding reactions. Anal Bioanal Chem 405, 8981–8993 (2013). https://doi.org/10.1007/s00216-013-7203-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7203-8

Keywords

Navigation