Analytical and Bioanalytical Chemistry

, Volume 405, Issue 28, pp 8981–8993

Temperature-dependent size exclusion chromatography for the in situ investigation of dynamic bonding/debonding reactions

  • Josef Brandt
  • Nathalie K. Guimard
  • Christopher Barner-Kowollik
  • Friedrich G. Schmidt
  • Albena Lederer
Research Paper
Part of the following topical collections:
  1. Separation and Characterization of Natural and Synthetic Macromolecules

Abstract

Polymers capable of dynamic bonding/debonding reactions are of great interest in modern day research. Potential applications can be found in the fields of self-healing materials or printable networks. Since temperature is often used as a stimulus for triggering reversible bonding reactions, an analysis operating at elevated temperatures is very useful for the in situ investigation of the reaction mechanism, as unwanted side effects can be minimized when performing the analyses at the same temperature at which the reactions occur. A temperature-dependent size exclusion chromatographic system (TD SEC) has been optimized for investigating the kinetics of retro Diels−Alder-based depolymerization of Diels−Alder polymers. The changing molecular weight distribution of the analyzed polymers during depolymerization gives valuable quantitative information on the kinetics of the reactions. Adequate data interpretation methods were developed for the correct evaluation of the chromatograms. The results are confirmed by high-temperature dynamic light scattering, thermogravimetric analysis, and time-resolved nuclear magnetic resonance spectroscopy at high temperatures. In addition, the SEC system and column material stability under application conditions were assessed using thermoanalysis methods, infrared spectroscopy, nitrogen physisorption, and scanning electron microscopy. The findings demonstrate that the system is stable and, thus, we can reliably characterize such dynamically bonding/debonding systems with TD SEC.

Figure

3D illustration of chromatograms of a polymer after different times of a depolymerization reaction

Keywords

Self-healing Retro Diels−Alder High-temperature SEC Temperature-dependent SEC 

References

  1. 1.
    Haining L, Yuan X, Zaisheng C, Jie S (2011) Microporous membrane with temperature-sensitive breathability based on PU/PNIPAAm semi-IPN. J Appl Polym Sci 124:2–8CrossRefGoogle Scholar
  2. 2.
    Zhang S, Yu F (2011) Piezoelectric materials for high temperature sensors. J Am Ceram Soc 94:3153–3170CrossRefGoogle Scholar
  3. 3.
    Islam A, Yasin T, Bano I, Riaz M (2011) Controlled release of aspirin from pH-sensitive chitosan/poly(vinyl alcohol) hydrogel. J Appl Polym Sci 124:4184–92CrossRefGoogle Scholar
  4. 4.
    Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131CrossRefGoogle Scholar
  5. 5.
    Wang CH, Sidhu K, Yang T, Zhang J, Shanks R (2012) Interlayer self-healing and toughening of carbon fibre/epoxy composites using copolymer films. Compos Appl Sci Manuf 43:512–518CrossRefGoogle Scholar
  6. 6.
    Maeda T, Otsuka H, Takahara A (2009) Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog Poly Sci 34:581–604CrossRefGoogle Scholar
  7. 7.
    Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim 2:1–9CrossRefGoogle Scholar
  8. 8.
    Guimard NK, Oehlenschlaeger KK, Zhou J, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213:131–143CrossRefGoogle Scholar
  9. 9.
    Kwart H, King K (1968) The reverse Diels–Alder or retrodiene reaction. Chem Rev 68:415–439CrossRefGoogle Scholar
  10. 10.
    Zhou J, Guimard NK, Inglis AJ, Namazian M, Lin CY, Coote ML, Spyrou E, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Thermally reversible Diels–Alder-based polymerization: an experimental and theoretical assessment. Pol Chem 3:628–639CrossRefGoogle Scholar
  11. 11.
    Sanyal A (2010) Diels–Alder cycloaddition-cycloreversion: a powerful combo in materials design. Macromol Chem Phys 211:1417–1425CrossRefGoogle Scholar
  12. 12.
    Park JS, Darlington T, Starr AF, Takahashi K, Riendeau J, Thomas Hahn H (2010) Multiple healing effect of thermally activated self-healing composites based on Diels–Alder reaction. Compos Sci Technol 70:2154–2159CrossRefGoogle Scholar
  13. 13.
    Froimowicz P, Frey H, Landfester K (2011) Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromol Rapid Commun 32:468–473CrossRefGoogle Scholar
  14. 14.
    Chung C, Roh Y, Cho S, Kim J (2004) Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem Mater 16:3982–3984CrossRefGoogle Scholar
  15. 15.
    Pasch H (2001) Recent developments in polyolefin characterization. Macromol Sy 165:91–98CrossRefGoogle Scholar
  16. 16.
    Cho H, Park S, Ree M, Chang T, Jung JC, Zin WC (2006) High temperature size exclusion chromatography. Macromol Res 14:383–386CrossRefGoogle Scholar
  17. 17.
    Ginzburg A, Macko T, Dolle V, Brüll R (2011) Characterization of polyolefins by comprehensive high-temperature two-dimensional liquid chromatography (HT 2D-LC). Europ Polym J 47:319–329CrossRefGoogle Scholar
  18. 18.
    Park S, Cho H, Kim Y, Ahn S, Chang T (2007) Fast size-exclusion chromatography at high temperature. J Chrom A 1157:96–100CrossRefGoogle Scholar
  19. 19.
    Guimard NK, Ho J, Brandt J, Lin Y, Namazian M, Jan O, Oehlenschlaeger KK, Hilf S, Lederer A, Schmidt FG, Coote ML, Barner-Kowollik C (2013) Harnessing entropy to direct the bonding/debonding of polymer systems based on reversible chemistry. Chem Sci 4:2752–2759CrossRefGoogle Scholar
  20. 20.
    Li Y, Fan Y, Ma J (2001) The thermal properties of porous polydivinylbenzene beads. React Funct Polym 50:57–65CrossRefGoogle Scholar
  21. 21.
    Straus S, Madorsky SL (1961) Thermal stability of polydivinylbenzene and of copolymers of styrene with divinylbenzene and with trivinylbenzene. J Res Nat Bur Stand A Phys Chem 65A:243–248CrossRefGoogle Scholar
  22. 22.
    De Santa MLC, Souza MAV, Santos FR, Rubenich LMS, Ferreira MDJF, Sá RMP (2008) Thermogravimetric and spectrometric characterizations of poly(styrene-co-divinylbenzene) containing phosphinic and phosphonic acid groups. Polym Eng Sci 48:1897–1900CrossRefGoogle Scholar
  23. 23.
    Grubisic Z, Rempp P, Benoit H (1967) A universal calibration for gel permeation chromatography. Polym Lett 5:753–759CrossRefGoogle Scholar
  24. 24.
    Socrates G (1980) Infrared characteristic group frequencies. Wiley, ChichesterGoogle Scholar
  25. 25.
    Grimes BA, Skudas R, Unger KK, Lubda D (2007) Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography. J Chrom A 1144:14–29CrossRefGoogle Scholar
  26. 26.
    Yao Y, Lenhoff AM (2004) Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography. J Chrom A 1037:273–282CrossRefGoogle Scholar
  27. 27.
    DePhillips P, Lenhoff AM (2000) Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography. J Chrom A 883:39–54CrossRefGoogle Scholar
  28. 28.
    Potschka M (1987) Universal calibration of gel permeation chromatography and determination of molecular shape in solution. Anal Biochem 162:47–64CrossRefGoogle Scholar
  29. 29.
    Renn CN, Synovec RE (1992) Effect of temperature on separation efficiency for high-speed size exclusion chromatography. Anal Chem 64:479–484CrossRefGoogle Scholar
  30. 30.
    Antia FD, Horvath C (1988) High-performance liquid chromatography at elevated temperatures: examination of conditions for the rapid separation of large molecules. J Chrom 435:1–15CrossRefGoogle Scholar
  31. 31.
    Greibrokk T, Andersen T (2003) High-temperature liquid chromatography. J Chrom A 1000:743–755CrossRefGoogle Scholar
  32. 32.
    AgilentTechnologies (2013) Organic GPC/SEC columns product guideGoogle Scholar
  33. 33.
    Peterson JD, Vyazovkin S, Wight C a (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784CrossRefGoogle Scholar
  34. 34.
    Borchard W (1978) Thermodynamic reflections on the course of polymer swelling curves. Europ Polym J 14:661–664CrossRefGoogle Scholar
  35. 35.
    Cantow MJR, Porter RS, Julian F (1967) Effect of temperature and polymer type on gel permeation chromatography. J Polym Sci A 15:987–991Google Scholar
  36. 36.
    Oehlenschlaeger KK, Guimard NK, Brandt J, Mueller JO, Lin CY, Hilf S, Lederer A, Coote ML, Schmidt FG, Barner-Kowollik C (2013) Fast and catalyst-free hetero-Diels–Alder chemistry for on demand cyclable bonding/debonding materials. Polym Chem. doi:10.1039/c3py00476g Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Josef Brandt
    • 1
    • 2
  • Nathalie K. Guimard
    • 3
    • 4
    • 5
  • Christopher Barner-Kowollik
    • 3
    • 4
  • Friedrich G. Schmidt
    • 6
  • Albena Lederer
    • 1
    • 2
  1. 1.Leibniz-Institute of PolymerResearch DresdenDresdenGermany
  2. 2.Technische Universität DresdenDresdenGermany
  3. 3.Preparative Macromolecular Chemistry, Institut für Technische Chemie und PolymerchemieKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  4. 4.Institut für Biologische GrenzflächenKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  5. 5.Functional Surfaces GroupINM - Leibniz-Institute for New Materials GmbHSaarbrückenGermany
  6. 6.Evonik Industries AGMarlGermany

Personalised recommendations