Analytical and Bioanalytical Chemistry

, Volume 405, Issue 23, pp 7469–7476 | Cite as

Rapid mastitis detection assay on porous nitrocellulose membrane slides

  • Liyakat Hamid Mujawar
  • Antoine Moers
  • Willem Norde
  • Aart van Amerongen
Research Paper


We have developed a rapid mastitis detection test based on the immobilization of tag-specific antibody molecules, the binding of double-tagged amplicons, and as a secondary signal a conjugate of black carbon nanoparticles having molecules of a fusion protein of neutrAvidin and alkaline phosphatase at their surface. The antibodies were inkjet printed onto three different nitrocellulose membrane slides, Unisart (Sartorius), FAST (GE Whatman), and Oncyte-Avid (Grace-Biolabs), and the final assay signals on these slides were compared. The blackness of the spots was determined by flatbed scanning and assessment of the pixel gray volume using TotalLab image analysis software. The black spots could be easily read by the naked eye. We successfully demonstrated the detection of specific amplicons from mastitis-causing pathogens in less than 3 h. Using a similar protocol, we also showed that it was possible to detect specific amplicons from four different mastitis-causing pathogens (six strains) on the same pad. The influence of two different printing buffers, phosphate-buffered saline (pH 7.4) and carbonate buffer (pH 9.6), on the functionality of the primary antibodies was also compared.


Mastitis Biochip Nitrocellulose PCR Microarray immunoassay Carbon nanoparticles 



This research was supported by the Dutch Technology Foundation STW, Applied-Science Division of NWO (Dutch Organisation for Scientific Research), and the Technology Program of the Ministry of Economic Affairs of The Netherlands. Dr. Gerard Wellenberg from the Animal Health Service, Deventer, The Netherlands, is acknowledged for providing pathogen primer sequences and DNA template samples.


  1. 1.
    Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M (2012) Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab on a Chip 12(18):3249–3266CrossRefGoogle Scholar
  2. 2.
    Kostrzynska M, Bachand A (2006) Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens. Can J Microbiol 52(1):1–8. doi: 10.1139/w05-105 CrossRefGoogle Scholar
  3. 3.
    Seidel M, Niessner R (2008) Automated analytical microarrays: a critical review. Anal Bioanal Chem 391(5):1521–1544CrossRefGoogle Scholar
  4. 4.
    Noguera PS, Posthuma-Trumpie GA, van Tuil M, van der Wal FJ, de Boer A, Moers APHA, van Amerongen A (2011) Carbon nanoparticles as detection labels in antibody microarrays. Detection of genes encoding virulence factors in Shiga toxin-producing Escherichia coli. Anal Chem 83(22):8531–8536. doi: 10.1021/ac201823v Google Scholar
  5. 5.
    Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, Teh BS, Haab BB (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3(1):56–63CrossRefGoogle Scholar
  6. 6.
    Ressine A, Marko-Varga G, Laurell T, El-Gewely MR (2007) Porous silicon protein microarray technology and ultra-/superhydrophobic states for improved bioanalytical readout. Biotechnol Annu Rev 13:149–200Google Scholar
  7. 7.
    Kim SY, Yu J, Son SJ, Min J (2010) Signal enhancement in a protein chip array using a 3-D nanosurface. Ultramicroscopy 110(6):659–665CrossRefGoogle Scholar
  8. 8.
    Mujawar LH, Norde W, van Amerongen A (2012) Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities. Analyst 138(2):518–524CrossRefGoogle Scholar
  9. 9.
    Mujawar LH, van Amerongen A, Norde W (2012) Influence of buffer composition on the distribution of inkjet printed protein molecules and the resulting spot morphology. Talanta 98:1–6CrossRefGoogle Scholar
  10. 10.
    Dufva M (2005) Fabrication of high quality microarrays. Biomol Eng 22(5–6):173–184CrossRefGoogle Scholar
  11. 11.
    Walter J-G, Stahl F, Reck M, Praulich I, Nataf Y, Hollas M, Pflanz K, Melzner D, Shoham Y, Scheper T (2010) Protein microarrays: reduced autofluorescence and improved LOD. Eng Life Sci 10(2):103–108. doi: 10.1002/elsc.200900078 Google Scholar
  12. 12.
    Stillman BA, Tonkinson JL (2000) FASTTM slides: a novel surface for microarrays. Biotechniques 29(3):630–635Google Scholar
  13. 13.
    Petrik J (2006) Diagnostic applications of microarrays. Transf Med 16(4):233–247. doi: 10.1111/j.1365-3148.2006.00673.x CrossRefGoogle Scholar
  14. 14.
    Kukar T, Eckenrode S, Gu Y, Lian W, Megginson M, She J-X, Wu D (2002) Protein microarrays to detect protein–protein interactions using red and green fluorescent proteins. Anal Biochem 306(1):50–54CrossRefGoogle Scholar
  15. 15.
    Reck M, Stahl F, Walter JG, Hollas M, Melzner D, Scheper T (2007) Optimization of a microarray sandwich-ELISA against hINF-γ on a modified nitrocellulose membrane. Biotechnolgy Prog 23(6):1498–1505. doi: 10.1021/bp070179i CrossRefGoogle Scholar
  16. 16.
    Koskinen MT, Holopainen J, Pyörälä S, Bredbacka P, Pitkälä A, Barkema HW, Bexiga R, Roberson J, Sølverød L, Piccinini R, Kelton D, Lehmusto H, Niskala S, Salmikivi L (2009) Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. J of Dairy Sci 92(3):952–959CrossRefGoogle Scholar
  17. 17.
    Pyorala S (2003) Indicators of inflammation in the diagnosis of mastitis. Vet Res 34(5):565–578CrossRefGoogle Scholar
  18. 18.
    Fox LK, Adams DS (2000) The ability of the enzyme-linked immunosorbent assay to detect antibody against Staphylococcus aureus in milk following experimental intramammary infection. J of Vet Med, Series B 47(7):517–526. doi: 10.1046/j.1439-0450.2000.00379.x CrossRefGoogle Scholar
  19. 19.
    Cai HY, Bell-Rogers P, Parker L, Prescott JF (2005) Development of a real-time PCR for detection of Mycoplasma bovis in bovine milk and lung samples. J Vet Diagn Investig 17(6):537–545. doi: 10.1177/104063870501700603 CrossRefGoogle Scholar
  20. 20.
    Garcia-Cordero JL, Ricco AJ, Li D (2008) Lab-on-a-chip (general philosophy). In: Dongqin Li (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New York. pp 962–969. doi: 10.1007/978-0-387-48998-8_780
  21. 21.
    Moon JS, Koo HC, Joo YS, Jeon SH, Hur DS, Chung CI, Jo HS, Park YH (2007) Application of a new portable microscopic somatic cell counter with disposable plastic chip for milk analysis. J of Dairy Sci 90(5):2253–2259CrossRefGoogle Scholar
  22. 22.
    Lee K-H, Lee J-W, Wang S-W, Liu L-Y, Lee M-F, Chuang S-T, Shy Y-M, Chang C-L, Wu M-C, Chi C-H (2008) Development of a novel biochip for rapid multiplex detection of seven mastitis-causing pathogens in bovine milk samples. J Vet Diagn Invest 20(4):463–471CrossRefGoogle Scholar
  23. 23.
    Lönnberg M, Carlsson J (2001) Quantitative detection in the attomole range for immunochromatographic tests by means of a flatbed scanner. Anal Biochem 293(2):224–231CrossRefGoogle Scholar
  24. 24.
    Noguera P, Posthuma-Trumpie G, van Tuil M, van der Wal F, de Boer A, Moers A, van Amerongen A (2011) Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli. Anal Bioanal Chem 399(2):831–838. doi: 10.1007/s00216-010-4334-z CrossRefGoogle Scholar
  25. 25.
    Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, Luxananil P, Kirtikara K, Gajanandana O (2009) Development of antibody array for simultaneous detection of foodborne pathogens. Biosens Bioelectron 24(6):1641–1648CrossRefGoogle Scholar
  26. 26.
    Ahmad AL, Low SC, Shukor SRA, Ismail A (2008) Synthesis and characterization of polymeric nitrocellulose membranes: influence of additives and pore formers on the membrane morphology. J Appl Polym Sci 108(4):2550–2557. doi: 10.1002/app.27592 CrossRefGoogle Scholar
  27. 27.
    Ahmad AL, Low SC, Shukor SRA, Ismail A (2011) Investigating membrane morphology and quality of immobilized protein for the development of lateral flow immunoassay. J Immunoass Immunochem 33(1):48–58. doi: 10.1080/15321819.2011.591479 Google Scholar
  28. 28.
    Irvine EJ, Hernandez-Santana A, Faulds K, Graham D (2011) Fabricating protein immunoassay arrays on nitrocellulose using Dip-pen lithography techniques. Analyst 136(14):2925–2930CrossRefGoogle Scholar
  29. 29.
    Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A (2000) Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 278(2):123–131CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Liyakat Hamid Mujawar
    • 1
    • 2
  • Antoine Moers
    • 1
  • Willem Norde
    • 2
    • 3
  • Aart van Amerongen
    • 1
  1. 1.Biomolecular Sensing and Diagnostics, Food and Biobased ResearchWageningen University and Research CentreWageningenThe Netherlands
  2. 2.Laboratory of Physical Chemistry and Colloid ScienceWageningen UniversityWageningenThe Netherlands
  3. 3.Department of Biomedical Engineering, W.J. Kolff InstituteUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands

Personalised recommendations