Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 21, pp 6621–6628 | Cite as

Peptide structural analysis using continuous Ar cluster and C60 ion beams

  • Satoka Aoyagi
  • John S. Fletcher
  • Sadia Sheraz (Rabbani)
  • Tomoko Kawashima
  • Irma Berrueta Razo
  • Alex Henderson
  • Nicholas P. Lockyer
  • John C. Vickerman
Research Paper

Abstract

A novel application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) with continuous Ar cluster beams to peptide analysis was investigated. In order to evaluate peptide structures, it is necessary to detect fragment ions related to multiple neighbouring amino acid residues. It is, however, difficult to detect these using conventional ToF-SIMS primary ion beams such as Bi cluster beams. Recently, C60 and Ar cluster ion beams have been introduced to ToF-SIMS as primary ion beams and are expected to generate larger secondary ions than conventional ones. In this study, two sets of model peptides have been studied: (des-Tyr)-Leu-enkephalin and (des-Tyr)-Met-enkephalin (molecular weights are approximately 400 Da), and [Asn1 Val5]-angiotensin II and [Val5]-angiotensin I (molecular weights are approximately 1,000 Da) in order to evaluate the usefulness of the large cluster ion beams for peptide structural analysis. As a result, by using the Ar cluster beams, peptide molecular ions and large fragment ions, which are not easily detected using conventional ToF-SIMS primary ion beams such as Bi3 +, are clearly detected. Since the large fragment ions indicating amino acid sequences of the peptides are detected by the large cluster beams, it is suggested that the Ar cluster and C60 ion beams are useful for peptide structural analysis.

Keywords

Continuous Ar cluster beam ToF-SIMS Peptide structure (des-Tyr)-enkephalin Angiotensin 

Notes

Acknowledgments

The authors thank Messrs Rowland Hill and Retsu Oiwa for their useful support.

References

  1. 1.
    Urquhart AJ, Taylor M, Anderson DG, Langer R, Davies MC, Alexander MR (2008) Analytical Chemistry 80:135–142CrossRefGoogle Scholar
  2. 2.
    Leufgen K, Mutter M, Vogel H, Szymczak W (2003) Journal of the American Chemical Society 125:8911–8915CrossRefGoogle Scholar
  3. 3.
    Robinson MA, Graham DJ, Castner DG (2012) Analytical Chemistry 84:4880–4885CrossRefGoogle Scholar
  4. 4.
    Kotze HL, Armitage EG, Fletcher JS, Henderson A, Williams KJ, Lockyer NP, Vickerman JC (2013) Surface and Interface Analysis 45:277–281CrossRefGoogle Scholar
  5. 5.
    Lanekoff I, Phan NTN, Van Bell CT, Winograd N, Sjövall P, Ewing AG (2013) Surface and Interface Analysis 45:211–214CrossRefGoogle Scholar
  6. 6.
    Klerk LA, Dankers PYW, Popa ER, Bosman AW, Sanders ME, Reedquist KA, Heeren RMA (2010) Analytical Chemistry 82:4337–4343CrossRefGoogle Scholar
  7. 7.
    Benninghoven A, Sichtermann W (1977) Organic Mass Spectrometry 12:595–597CrossRefGoogle Scholar
  8. 8.
    Benninghoven A (1994) Surface Science 299:246–260CrossRefGoogle Scholar
  9. 9.
    Castner DG, Ratner BD (2002) Surface Science 500:28–60CrossRefGoogle Scholar
  10. 10.
    Wagner MS, Castner DG (2001) Langmuir 17:4649–4660CrossRefGoogle Scholar
  11. 11.
    Mantus DS, Ratner BD, Carlson BA, Moulder JF (1993) Analytical Chemistry 65:1431–1438CrossRefGoogle Scholar
  12. 12.
    Lhoest JB, Detrait E, van den Bosch de Aguilar P, Bertrand P (1998) Journal of Biomedical Materials Research 41:95–103CrossRefGoogle Scholar
  13. 13.
    Tidwell CD, Castner DG, Golledge SL, Ratner BD, Meyer K, Hagenhoff B, Benninghoven A (2001) Surface and Interface Analysis 31:724–733CrossRefGoogle Scholar
  14. 14.
    Canavan HE, Graham DJ, Cheng XH, Ratner BD, Castner DG (2007) Langmuir 23:50–56CrossRefGoogle Scholar
  15. 15.
    Delcorte A, Medard N, Bertrand P (2002) Analytical Chemistry 74:4955–4968CrossRefGoogle Scholar
  16. 16.
    Gnaser H, Ichiki K, Matsuo J (2012) Rapid Communications in Mass Spectrometry 26:1–8CrossRefGoogle Scholar
  17. 17.
    Mochiji K, Hashinokuchi M, Moritani K, Toyoda N (2009) Rapid Communications in Mass Spectrometry 23:648–652CrossRefGoogle Scholar
  18. 18.
    Rabbani S, Barber AM, Fletcher JS, Lockyer NP, Vickerman JC (2011) Analytical Chemistry 83:3793–3800CrossRefGoogle Scholar
  19. 19.
    Fletcher JS, Lockyer NP, Vickerman JC (2011) Mass Spectrometry Reviews 30:142–174CrossRefGoogle Scholar
  20. 20.
    Aoyagi S, Mihara I, Kudo M (2013) Surface and Interface Analysis 45:190–193CrossRefGoogle Scholar
  21. 21.
    Wagner MS, Castner DG (2003) Applied Surface Science 203:698–703CrossRefGoogle Scholar
  22. 22.
    Lee, MSE (2012) Mass Spectrometry Handbook; WileyGoogle Scholar
  23. 23.
    Papayannopoulos IA (1995) Mass Spectrometry Reviews 14:49–73CrossRefGoogle Scholar
  24. 24.
    Vaisar T, Urban JJ (1996) Mass Spectrom 31:1185–1187CrossRefGoogle Scholar
  25. 25.
    Nold MJ, Wesdemiotis C, Yalcin T, Harrison AG (1997) Int J Mass Spectrom Ion Processes 164:137CrossRefGoogle Scholar
  26. 26.
    Fletcher JS (2009) Analyst 134:2204–2215CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Satoka Aoyagi
    • 1
  • John S. Fletcher
    • 2
  • Sadia Sheraz (Rabbani)
    • 3
  • Tomoko Kawashima
    • 4
  • Irma Berrueta Razo
    • 3
  • Alex Henderson
    • 3
  • Nicholas P. Lockyer
    • 3
  • John C. Vickerman
    • 3
  1. 1.Faculty of Life and Environmental ScienceShimane UniversityMatsue-shiJapan
  2. 2.Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
  3. 3.Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
  4. 4.Panasonic Corp.Moriguchi CityJapan

Personalised recommendations