Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 4, pp 995–1010 | Cite as

Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry

  • Corinne BuréEmail author
  • Jean-Luc Cacas
  • Sébastien Mongrand
  • Jean-Marie Schmitter
Review

Abstract

Although glycosyl inositol phosphoryl ceramides (GIPCs) represent the most abundant class of sphingolipids in plants, they still remain poorly characterized in terms of structure and biodiversity. More than 50 years after their discovery, little is known about their subcellular distribution and their exact roles in membrane structure and biological functions. This review is focused on extraction and characterization methods of GIPCs occurring in plants and fungi. Global methods for characterizing ceramide moieties of GIPCs revealed the structures of long-chain bases (LCBs) and fatty acids (FAs): LCBs are dominated by tri-hydroxylated molecules such as monounsaturated and saturated phytosphingosine (t18:1 and t18:0, respectively) in plants and mainly phytosphingosine (t18:0 and t20:0) in fungi; FA are generally 14–26 carbon atoms long in plants and 16–26 carbon atoms long in fungi, these chains being often hydroxylated in position 2. Mass spectrometry plays a pivotal role in the assessment of GIPC diversity and the characterization of their structures. Indeed, it allowed to determine that the core structure of GIPC polar heads in plants is Hex(R1)-HexA-IPC, with R1 being a hydroxyl, an amine, or a N-acetylamine group, whereas the core structure in fungi is Man-IPC. Notably, information gained from tandem mass spectrometry spectra was most useful to describe the huge variety of structures encountered in plants and fungi and reveal GIPCs with yet uncharacterized polar head structures, such as hexose–inositol phosphoceramide in Chondracanthus acicularis and (hexuronic acid)4–inositol phosphoceramide and hexose–(hexuronic acid)3–inositol phosphoceramide in Ulva lactuca.

Figure

Example of GIPC with its three building blocks (fatty acid, FA; long chain base, LCB; polar head) where R1 could be a hydroxyl, an amine or a N-acetylamine group

Keywords

Glycosyl inositol phosphoryl ceramide Plants Fungi Sphingolipids Mass spectrometry 

Abbreviations

CID

Collision-induced dissociation

DHA

2,6-dihydroxy-acetophenone

ESI

Electrospray ionization

FA

Fatty acid

FAME

Fatty acid methyl ester

Gal

Galactose

GIPC

Glycosyl inositol phosphoryl ceramide

GlcA

Glucuronic acid

GlcN

Glucosamine

GlcNAc

N-acetyl glucosamine

Hex

Hexose

IPC

Inositol phosphoryl ceramide

IT

Ion trap

LCB

Long-chain base

MALDI

Matrix-assisted laser desorption ionization

Man

Mannose

MRM

Multiple reaction monitoring

MS/MS

Tandem mass spectrometry

NAc

N-acetyl

Q

Quadrupole

TIC

Total ion current

ToF

Time of flight

Notes

Acknowledgments

The work was supported by the French Agence Nationale pour la Recherche (contract no. NT09_517917 PANACEA).

References

  1. 1.
    Pata MO, Hannun YA, Ng CKY (2010) New Phytol 185:611–630CrossRefGoogle Scholar
  2. 2.
    Cacas JL, Melser S, Domergue F, Joubès J, Bourdenx B, Schmitter JM, Mongrand S (2012) Anal Bioanal Chem 403:2745–2755CrossRefGoogle Scholar
  3. 3.
    Sperling P, Franke S, Luthje S, Heinz E (2005) Plant Physiol Biochem 43:1031–1038CrossRefGoogle Scholar
  4. 4.
    Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB (2013) Curr Opin Plant Biol DOI:  10.1016/j.pbi.2013.02.009
  5. 5.
    Levery SB, Toledo MS, Straus AH, Takahashi HK (2001) Rapid Commun Mass Spectrom 15:2240–2258CrossRefGoogle Scholar
  6. 6.
    Carter HE, Gigg RH, Law JH, Nakayama T, Weber E (1958) J Biol Chem 233:1309–1314Google Scholar
  7. 7.
    Markham JE, Li J, Cahoon EB, Jaworski JG (2006) J Biol Chem 281:22684–22694CrossRefGoogle Scholar
  8. 8.
    Kaul K, Lester RL (1975) Plant Physiol 55:120–129CrossRefGoogle Scholar
  9. 9.
    Kaul K, Lester RL (1978) Biochemistry 17:3569–3575CrossRefGoogle Scholar
  10. 10.
    Markham JE, Jaworski JG (2007) Rapid Commun Mass Spectrom 21:1304–1314CrossRefGoogle Scholar
  11. 11.
    Carter HE, Koob JL (1969) J Lipid Res 10:363–369Google Scholar
  12. 12.
    Buré C, Cacas JL, Wang F, Gaudin K, Domergue F, Mongrand S, Schmitter JM (2011) Rapid Commun Mass Spectrom 25:3131–3145CrossRefGoogle Scholar
  13. 13.
    Toledo MS, Levery SB, Bennion B, Guimaraes LL, Castle SA, Lindsey R, Momany M, Park C, Straus AH, Takahashi HK (2007) J Lipid Res 48:1801–1824CrossRefGoogle Scholar
  14. 14.
    Simenel C, Coddeville B, Delepierre M, Latgé JP, Fontaine T (2008) Glycobiology 18:84–96CrossRefGoogle Scholar
  15. 15.
    Heise N, Gutierrez ALS, Mattos KA, Jones C, Wait R, Previato JO, Mendonça-Previato L (2002) Glycobiology 12:409–420CrossRefGoogle Scholar
  16. 16.
    Penha CV L y, Todeschini AR, Lopes-Bezerra LM, Wait R, Jones C, Mattos KA, Heise N, Mendonça-Previato L, Previato JO (2001) Eur J Biochem 268:4243–4250CrossRefGoogle Scholar
  17. 17.
    Gutierrez ALS, Farage L, Melo MN, Mohana-Borges RS, Guerardel Y, Coddeville B, Wieruszeski JM, Mendonça-Previato L, Previato JO (2007) Glycobiology 17:1C–11CCrossRefGoogle Scholar
  18. 18.
    Jennemann R, Bauer BL, Bertalanffy H, Geyer R, Gschwind RM, Selmer T (1999) Wiegandt H 259:331–338Google Scholar
  19. 19.
    Jennemann R, Geyer R, Sandhoff R, Gschwind RM, Levery SB, Grone HJ, Wiegandt H (2001) Eur J Biochem 268:1190–1205CrossRefGoogle Scholar
  20. 20.
    Toledo MS, Levery SB, Straus AH, Takahashi HK (2001) FEBS Lett 493:50–56CrossRefGoogle Scholar
  21. 21.
    Wells GB, Dickson RC, Lester RL (1996) J Bact 178:6223–6226Google Scholar
  22. 22.
    Salas JJ, Markham JE, Martinez-Force E, Garces R (2011) J Agric Food Chem 59:12486–12492CrossRefGoogle Scholar
  23. 23.
    Uchiyama R, Aoki K, Sugimoto H, Taka N, Katayama T, Itonori S, Sugita M, Che FS, Kumagai H, Yamamoto K (2009) Biosci Biotechnol Biochem 73:74–78CrossRefGoogle Scholar
  24. 24.
    Aoki K, Uchiyama R, Itonori S, Sugita M, Che FS, Isogai A, Hada N, Hada J, Takeda T, Kumagai H, Yamamoto K (2004) Biochem J 378:461–472CrossRefGoogle Scholar
  25. 25.
    Levery SB, Toledo MS, Straus AH, Takahashi HK (1998) Biochemistry 37:8764–8775CrossRefGoogle Scholar
  26. 26.
    Hsieh TC, Lester RL, Laine RA (1981) J Biol Chem 256:7747–7755Google Scholar
  27. 27.
    Trinel PA, Maes E, Zanetta JP, Delplace F, Coddeville B, Jouault T, Strecker G, Poulain D (2002) J Biol Chem 277:37260–37271CrossRefGoogle Scholar
  28. 28.
    Costello CE, Vath JE (1990) Meth Enzymol 193:738–768CrossRefGoogle Scholar
  29. 29.
    Blaas N, Humpf HU (2013) J Agric Food Chem DOI:  10.1021/jf4001499
  30. 30.
    Barr K, Lester RL (1984) Biochemistry 23:5581–5588CrossRefGoogle Scholar
  31. 31.
    Carter HE, Kisic A (1969) J Lipid Res 10:356–362Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Corinne Buré
    • 1
    Email author
  • Jean-Luc Cacas
    • 2
    • 3
  • Sébastien Mongrand
    • 2
  • Jean-Marie Schmitter
    • 1
  1. 1.Université de Bordeaux, Chimie Biologie des Membranes et Nanoobjets CBMN-UMR 5248 Centre de Génomique FonctionnelleUniversité Bordeaux SegalenBordeaux CedexFrance
  2. 2.Université de Bordeaux, Laboratoire de Biogenèse MembranaireUMR 5200 CNRS-Université Bordeaux SegalenVillenave-d’Ornon CedexFrance
  3. 3.UMR1347 Agroécologie, INRA/Université de Bourgogne/AgrosupPôle Interactions Plante-MicroorganismeDijonFrance

Personalised recommendations