Analytical and Bioanalytical Chemistry

, Volume 405, Issue 20, pp 6389–6403 | Cite as

On-site airborne pheromone sensing

  • Christoph Wehrenfennig
  • Matthias Schott
  • Tina Gasch
  • Rolf Alexander Düring
  • Andreas Vilcinskas
  • Claus-Dieter Kohl


Pheromones and other semiochemicals play an important role in the natural world by influencing the behavior of plants, mammals, and insects. In the latter case, species-dependent pheromone communication has numerous applications, including the detection, trapping, monitoring and guiding of insects, as well as pest management in agriculture. On-site sensors are desirable when volatile organic compounds (VOCs) are used as semiochemicals. Insects have evolved highly selective sensors for such compounds, so biosensors comprising complete insects, isolated organs or individual proteins can be highly effective. However, isolated insect organs have a limited lifetime as biosensor, so biomimetic approaches are needed for prolonged monitoring, novel applications, or measurements in challenging environments. We discuss the development of on-site biosensors and biomimetic approaches for airborne-pheromone sensing, together with biomimetic VOC sensor systems. Furthermore, the infochemical effect describing the anthropogenic contamination of the ecosystem through semiochemicals, will be considered in the context of novel on-site pheromone sensing-systems.


Infochemical Semiochemical Pheromone sensing Biosensors Biomimetic chemical sensors 



diffuse reflectance infrared Fourier transform




electronic nose


field-effect transistors


ion mobility spectrometry


needle trap device


odorant-binding proteins


quartz-crystal microbalances




selective odorant measurement of a multi-sensor array


Volatile organic compounds



This work was supported by the state Hesse (Germany) within the joint-project “LOEWE-AmbiProbe – mass spectrometric in situ analysis in the sectors health, environment, climate, and safety.” The authors thank the members of the gas sensor group at the Institute of Applied Physics Giessen for valuable comments and Dr. Richard M. Twyman for editing the manuscript.


  1. 1.
    Karlson P, Lüscher M (1959) ‘Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56Google Scholar
  2. 2.
    Nordlund DA, Lewis WJ (1976) Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J Chem Ecol 2(2):211–220Google Scholar
  3. 3.
    Wyatt TD (2010) Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol A Neuroethology Sensory Neural Behav Physiol 196(10):685–700Google Scholar
  4. 4.
    Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: " alking trees" in the genomics era. Science 311(5762):812–815Google Scholar
  5. 5.
    Kanzaki R, Ano N, Sakurai T, Kazawa T (2008) Understanding and reconstruction of the mobiligence of insects employing multiscale biological approaches and robotics. Adv Robotics 22:1605–1628Google Scholar
  6. 6.
    Wyatt TD (2011) Pheromones and Behavior. Breithaupt T, Thiel M, (Eds) Chemical communication in crustaceans. Springer, New York, pp 23–38Google Scholar
  7. 7.
    Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2(2):131–139Google Scholar
  8. 8.
    Sbarbati A, Osculati F (2006) Allelochemical communication in vertebrates: kairomones, allomones, and synomones. Cells Tissues Organs 183(4):206–219Google Scholar
  9. 9.
    Karlson P, Doenecke D (2005) Karlsons Biochemie und Pathobiochemie (Edition 15). Georg Thieme Verlag, StuttgartGoogle Scholar
  10. 10.
    Ruther J, Meiners T, Steidle JL (2002) Rich in phenomena-lacking in terms. A classification of kairomones. Chemoecology 12(4):161–167Google Scholar
  11. 11.
    Bakke A, Kvamme T (1981) Kairomone response in Thanasimus predators to pheromone components of Ips typographus. J Chem Ecol 7(2):305–312Google Scholar
  12. 12.
    El-Sayed AM, Suckling DM, Wearing CH, Byers JA (2006) Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol 99(5):1550–1564Google Scholar
  13. 13.
    Bauer M, Kiesewetter O (2012) Gas sensors for wood drying and combustion processes. EUSAS Conference – The Future of Gas Sensors for Fire Detection and Safety Techniques, Saarbruck, Germany, 5–6 September 2012Google Scholar
  14. 14.
    Cook SM, KhanZR PJA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400Google Scholar
  15. 15.
    Dube FF, Tadesse K, Birgersson G, Seyoum E, Tekie H, Ignell R, Hill SR (2011) Fresh, dried, or smoked? Repellent properties of volatiles emitted from ethnomedicinal plant leaves against malaria and yellow fever vectors in Ethiopia. Malaria J 10(1):1–14Google Scholar
  16. 16.
    Siljander E, Gries R, Khaskin G, Gries G (2008) Identification of the airborne aggregation pheromone of the common bed bug, Cimex lectularius. J Chem Ecol 34(6):708–718Google Scholar
  17. 17.
    Schütz S, Weißbecker B, Koch UT, Hummel HE (1999) Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens Bioelectron 14(2):221–228Google Scholar
  18. 18.
    Le Conte Y, Mohammedi A, Robinson GE (2001) Primer effects of a brood pheromone on honeybee behavioral development. Proc Royal Soc London Series B Biol Sci 268(1463):163–168Google Scholar
  19. 19.
    Lait CG, Borden JH, Kovacs E, Moeri OE, Campbell M, Machial CM (2012) Treatment with synthetic brood pheromone (SuperBoost) enhances honey production and improves overwintering survival of package honey bee (Hymenoptera: Apidae) colonies. J Econ Entomol 105(2):304–312Google Scholar
  20. 20.
    Aluja M, Boller EF (1992) Host marking pheromone of Rhagoletis cerasi: foraging behavior in response to synthetic pheromonal isomers. J Chem Ecol 18(8):1299–1311Google Scholar
  21. 21.
    Roelofs WL, Carde RT (1977) Responses of Lepidoptera to synthetic sex pheromone chemicals and their analogues. Annu Rev Entomol 22(1):377–405Google Scholar
  22. 22.
    Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36(1):80–100Google Scholar
  23. 23.
    Santos IP, Ramos CLFG, Ramos JLG, Oliveira RF, Cunha ICN (2013) Efficient association between PGF2α and methyl 4–hydroxybenzoate sex pheromone prior to electroejaculation in dogs. Reproduct Domestic Animals 48:160–164Google Scholar
  24. 24.
    Jumean Z, Fazel L, Wood C, Cowan T, Evenden ML, Gries G (2009) Cocoon–spinning larvae of Oriental fruit moth and Indian meal moth do not produce aggregation pheromone. Agri Forest Entomol 11(2):205–212Google Scholar
  25. 25.
    Ando Y, Fukazawa Y, Masutani O, Iwasaki H, Honiden S (2006) Performance of pheromone model for predicting traffic congestion. Proceeding - AAMAS '06 Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems. Hakodate, Japan, 08–12 May 2006, pp. 73–80Google Scholar
  26. 26.
    Rust MK, Su NY (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375Google Scholar
  27. 27.
    Shorey HH (1973) Behavioral responses to insect pheromones. Annu Rev Entomol 18(1):349–380Google Scholar
  28. 28.
    Gullan PJ, Cranston P (2010) The insects: an outline of entomology. Chapter 4 Sensory System and Behavior. Wiley-Blackwell, Hoboken, pp 91–120Google Scholar
  29. 29.
    Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41(1):353–374Google Scholar
  30. 30.
    Whitman DW (1982) Grasshopper sexual pheromone: a component of the defensive secretion in Taeniopoda eques. Physiol Entomol 7(1):111–115Google Scholar
  31. 31.
    Ayre GL, Blum MS (1971) Attraction and alarm of ants (Camponotus spp.-Hymenoptera: Formicidae) by pheromones. Physiol Zool 44(2):77–83Google Scholar
  32. 32.
    El-Sayed AM (2004) The Pherobase–Database of Insect Pheromones and Semiochemicals. Ashraf M, El-SayedGoogle Scholar
  33. 33.
    Francke W, Schulz S (1999) Pheromones. Comprehensive Natural Products Chemistry, Vol 8: Miscellaneous Natural Products Including Marine Natural Products, Pheromones, Plant Hormones, and Aspects of Ecology. Elsevier Science Ltd, OxfordGoogle Scholar
  34. 34.
    Sakuma M, Fukami H (1990) The aggregation pheromone of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellide): isolation and identification of the attractant components of the pheromone. Appl Entomol Zool 25(3):355–368Google Scholar
  35. 35.
    Bigley WS, Vinson SB (1975) Characterization of a brood pheromone isolated from the sexual brood of the imported fire ant, Solenopsis invicta. Ann Entomol Soc Am 68:301–304Google Scholar
  36. 36.
    Taber SW (2000) Fire ants (Agriculture series No. 3). Chapter 3 The red imported fire ant (Solenopsis invicta). Texas A&M University Press: College Station, pp 25–57Google Scholar
  37. 37.
    Leal WS (2005) Pheromone reception. Topics Curr Chem 240:1–36Google Scholar
  38. 38.
    Rasmussen LEL, Lee TD, Roelofs WL, Zhang A, Daves GD Jr (1996) Insect pheromone in elephants. Nature 379(6567):684Google Scholar
  39. 39.
    Goodwin TE, Eggert MS, House SJ, Weddell ME, Schulte BA, Rasmussen LEL (2006) Insect pheromones and precursors in female African elephant urine. J Chem Ecol 32(8):1849–1853Google Scholar
  40. 40.
    Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Chapter 1 Animals in a chemical world. Cambridge University Press, Cambridge, pp 1–22Google Scholar
  41. 41.
    Priesner E, Naumann CM, Stertenbrink J (1984) Specificity of synthetic sex attractants in Zygaena moths. Z Naturforsch 39c:841–844Google Scholar
  42. 42.
    Ando T, Yamakawa R (2011) Analyses of lepidopteran sex pheromones by mass spectrometry. Trends Anal Chem 30(7):990–1002Google Scholar
  43. 43.
    Roelofs WL, Liu W, Hao G, Jiao H, Rooney AP, Linn CE (2002) Evolution of moth sex pheromones via ancestral genes. Proc Natl Acad Sci 99(21):13621–13626Google Scholar
  44. 44.
    Roelofs WL, Tette JP, Taschenberg EF, Comeau A (1971) Sex pheromone of the grape berry moth: identification by classical and electroantennogram methods, and field tests. J Insect Physiol 17(11):2235–2243Google Scholar
  45. 45.
    Baker TC (2008) Use of pheromones in IPM. Integrated Pest Management. Cambridge University Press, Cambridge, pp 273–285Google Scholar
  46. 46.
    Wiegerinck W, Setkus A, Buda V, Borg-Karlson AK, Mozuraitis R, de Gee A (2011) BOVINOSE: pheromone-based sensor system for detecting estrus in dairy cows. Procedia Computer Sci 7:340–342Google Scholar
  47. 47.
    Eßinger TM, Becker B, Sauerwald T, Paczkowski S, Schütz S, Kohl CD (2010) Volatile gas sensors for large-scale drying of wood. Sensoren und Messsysteme 2010–15. ITG/GMA-Fachtagung, Nuremberg, Germany, 18–19 May 2010Google Scholar
  48. 48.
    Mayer CJ, Vilcinskas A, Gross J (2008) Pathogen-induced release of plant allomone manipulates vector insect behavior. J Chem Ecol 34(12):1518–1522Google Scholar
  49. 49.
    Birnbaum LS (1994) Endocrine effects of prenatal exposure to PCBs, dioxins, and other xenobiotics: implications for policy and future research. Environ Health Perspect 102(8):676–679Google Scholar
  50. 50.
    Tabb MM, Blumberg B (2006) New modes of action for endocrine-disrupting chemicals. Mol Endocrinol 20(3):475–482Google Scholar
  51. 51.
    Solomon KR, Dohmen P, Fairbrother A, Marchand M, McCarty L (2010) Use of (eco) toxicity data as screening criteria for the identification and classification of PBT/POP compounds. Integrated Environ Assess Manage 5(4):680–696Google Scholar
  52. 52.
    Düring RA, Böhm L, Schlechtriem C (2012) Solid-phase microextraction for bioconcentration studies according to OECD TG 305. Environ Sci Europe 24(1):4Google Scholar
  53. 53.
    Gordon AK, Mantel SK, Muller NWJ (2012) Review of toxicological effects caused by episodic stressor exposure. EnvironToxicol Chem 31(5):1169–1174Google Scholar
  54. 54.
    Klaschka U (2008) The infochemical effect—a new chapter in ecotoxicology. Environ Sci Pollution Res 15(6):452–462Google Scholar
  55. 55.
    Lamprecht I, Schmolz E, Schricker B (2008) Pheromones in the life of insects. Eur Biophys J 37(7):1253–1260Google Scholar
  56. 56.
    Klaschka U (2009) A new challenge—development of test systems for the infochemical effect. Environ Sci Pollution Res 16(4):370–388Google Scholar
  57. 57.
    Schott M, Wehrenfennig C, Gasch T, Vilcinskas A (2013) Insect Antenna-Based Biosensors for In Situ Detection of Volatiles. Yellow Biotechnology II, Advances in Biochemical Engineering/Biotechnology, vol 136. Springer-Verlag, Berlin, p 23. doi: 10.1007/10_2013_210
  58. 58.
    Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72(5):698–711Google Scholar
  59. 59.
    Rützler M, Zwiebel LJ (2005) Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A Neuroethology Sensory Neural Behav Physiol 191(9):777–790Google Scholar
  60. 60.
    Behrend K (1971) Riechen in Wasser und in Luft bei Dytiscus marginalis L. Zeitschrift für vergleichende Physiologie 75(1):108–122Google Scholar
  61. 61.
    Buck LB (1996) Information coding in the vertebrate olfactory system. Ann Rev Neurosci 19(1):517–544Google Scholar
  62. 62.
    Stroble JK, Stone RB, Watkins SE (2009) An overview of biomimetic sensor technology. Sensor Rev 29(2):112–119Google Scholar
  63. 63.
    Liu Y, Feng X, Lawless D (2006) Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. J Membrane Sci 271(1):114–124Google Scholar
  64. 64.
    Aragon P, Atienza J, Climent MD (2000) Analysis of organic compounds in air: a review. Crit Rev Anal Chem 30(2/3):121–151Google Scholar
  65. 65.
    McClenny WA, Pleil JD, Holdren MW, Smith RN (1984) Automated cryogenic preconcentration and gas chromatographic determination of volatile organic compounds in air. Anal Chem 56(14):2947–2951Google Scholar
  66. 66.
    Filipiak W, Filipiak A, Ager C, Wiesenhofer H, Amann A (2012) Optimization of sampling parameters for collection and preconcentration of alveolar air by needle traps. J Breath Res 6(2):1–19, 027107. doi: 10.1088/1752-7155/6/2/027107 Google Scholar
  67. 67.
    Ouyang G, Pawliszyn J (2006) Recent developments in SPME for on-site analysis and monitoring. TrAC Trends Anal Chem 25(7):692–703Google Scholar
  68. 68.
    Koziel JA, Odziemkowski M, Pawliszyn J (2001) Sampling and analysis of airborne particulate matter and aerosols using in-needle trap and SPME fiber devices. Anal Chem 73(1):47–54Google Scholar
  69. 69.
    Lord HL, Zhan W, Pawliszyn J (2010) Fundamentals and applications of needle trap devices: a critical review. Anal Chim Acta 677(1):3–18Google Scholar
  70. 70.
    Wehrenfennig C, Schott M, Gasch T, Düring RA, Vilcinskas A, Kohl CD (2012) An approach to sense pheromone concentration by preconcentration and gas sensors. Physica Status Solidi A 210(5):932–937Google Scholar
  71. 71.
    Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1):121–131Google Scholar
  72. 72.
    Dematteo KE, Rinas MA, Sede MM, Davenport B, Argüelles CF, Lovett K, Parker PG (2009) Detection dogs: an effective technique for bush dog surveys. J Wildlife Manage 73(8):1436–1440Google Scholar
  73. 73.
    Haarmann T, Wingo R, Taylor-McCabe KJ (2008) Honey bees (Apis mellifera) as explosives detectors: exploring proboscis extension reflex conditioned response to trinitrotolulene (TNT). Los Alamos National Laboratory No. LA-UR-08-07100:1–14Google Scholar
  74. 74.
    Schneider M, Slotta-Bachmayr L (2009) Physical and mental Stress of SAR Dogs during Search Work. Canine ergonomics: the science of working dogs. CRC Press, Boca Raton, pp 263–280Google Scholar
  75. 75.
    Frederickx C, Verheggen F, Haubruge E (2011) Biosensors in forensic sciences. Biotechnol Agron Soc Environ 15(4):449–458Google Scholar
  76. 76.
    Frost EH, Shutler D, Hillier NK (2012) The proboscis extension reflex to evaluate learning and memory in honeybees (Apis mellifera): some caveats. Naturwissenschaften 99:677–686Google Scholar
  77. 77.
    Rains GC, Utley SL, Lewis WJ (2008) Behavioral monitoring of trained insects for chemical detection. Biotechnol Progress 22(1):2–8Google Scholar
  78. 78.
    Davis PJ, Wadhams L, Bayliss JS (2007) US Patent no. 7,237,504. US Patent and Trademark Office, Washington, DCGoogle Scholar
  79. 79.
    Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comparative Physiol A 194:501–515Google Scholar
  80. 80.
    Schneider D (1957) Elektrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des Seidenspinners Bombyx mori L. Zeitschrift für vergleichende Physiologie 40(1):8–41Google Scholar
  81. 81.
    Van der Pers JNC, Den Otter CJ (1978) Single cell responses from olfactory receptors of small ermine moths to sex-attractants. J Insect Physiol 24(4):337–343Google Scholar
  82. 82.
    Sauer AE, Karg G, Koch UT, De Kramer JJ, Milli R (1992) A portable EAG system for the measurement of pheromone concentrations in the field. Chem Senses 17(5):543–553Google Scholar
  83. 83.
    Wibe A (2004) How the choice of method influence on the results in electrophysiological studies of insect olfaction. J Insect Physiol 50(6):497–503Google Scholar
  84. 84.
    Rumbo ER, Suckling DM, Karg G (1995) Measurement of airborne pheromone concentrations using electroantennograms: interactions between environmental volatiles and pheromone. J Insect Physiol 41(6):465–471Google Scholar
  85. 85.
    Bousse L (1996) Whole cell biosensors. Sensors Actuators B Chem 34(1):270–275Google Scholar
  86. 86.
    Kaisheva A, Iliev I, Christov S, Kazareva R (1997) Electrochemical gas biosensor for phenol. Sensors Actuators B Chem 44(1):571–577Google Scholar
  87. 87.
    Hou Y, Jaffrezic-Renault N, Martelet C, Tlili C, Zhang A, Pernollet J-C et al (2005) Study of Langmuir and Langmuir-Blodgett films of odorant-binding protein/amphiphile for odorant biosensors. Langmuir 21(9):4058–4065Google Scholar
  88. 88.
    Hou Y, Jaffrezic-Renault N, Martelet C, Zhang A, Minic-Vidic J, Gorojankina T et al (2007) A novel detection strategy for odorant molecules based on controlled bioengineering of rat olfactory receptor I7. Biosens Bioelectron 22(7):1550–1555Google Scholar
  89. 89.
    Bohrn U, Stuetz E, Fleischer M, Schoening MJ, Wagner P (2011) Eukaryotic cell lines as a sensitive layer for direct monitoring of carbon monoxide. Physica Status Solidi A 208(6):1345–1350Google Scholar
  90. 90.
    Bohrn U, Stütz E, Fleischer M, Schöning MJ, Wagner P (2013) Using a cell-based gas biosensor for investigation of adverse effects of acetone vapors in vitro. Biosens Bioelectron 40(1):393–400Google Scholar
  91. 91.
    Takken W, Dekker T, Wijnholds YG (1997) Odor-mediated flight behavior of Anopheles gambiae Giles Sensu Stricto, and An. stephensi Liston in response to CO2, acetone, and 1-octen-3-ol (Diptera: Culicidae). J Insect Behav 10(3):395–407Google Scholar
  92. 92.
    SD Gregg A review of analytical methods for the identification and quantification of hydrocarbons found in jet propellant 8 and related petroleum based fuels. Biomed Chromatogr 20:492–507Google Scholar
  93. 93.
    Wolfrum EJ, Meglen RM, Peterson D, Sluiter J (2006) Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sensors Actuators B Chem 115(1):322–329Google Scholar
  94. 94.
    Hierlemann A, Gutierrez-Osuna R (2008) Higher-order chemical sensing. Chem Rev 108(2):563–613Google Scholar
  95. 95.
    Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sensor Rev 24(2):181–198Google Scholar
  96. 96.
    Hill HH, Siems WF, St Loouis RH, McMinn DG (1990) Ion Mass Spectroscopy. Anal Chem 62(23):1201–1209Google Scholar
  97. 97.
    Collins D, Lee M (2002) Developments in ion mobility spectrometry-mass spectrometry. Anal Bioanal Chem 372(1):66–73Google Scholar
  98. 98.
    Shvartsburg AA, Smith RD (2008) Optimum waveforms for differential ion mobility spectrometry (FAIMS). J Am Soc Mass Spectrom 19(9):1286–1295Google Scholar
  99. 99.
    Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384(5):1059–1070Google Scholar
  100. 100.
    Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54(3):515–529Google Scholar
  101. 101.
    Ruzsanyi V, Mochalski P, Schmid A, Wiesenhofer H, Klieber M, Amann A (2012) Ion mobility spectrometry for detection of skin volatiles. J Chromatogr B 911:84–92Google Scholar
  102. 102.
    Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI (2009) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax 64(9):744–748Google Scholar
  103. 103.
    Staddon BW, Abdollahi A, Parry J, Rossiter M, Knight DW (1994) Major component in male sex pheromone of cereal pest Eurygaster integriceps puton (Heteroptera: Scutelleridae) identified as a homosesquiterpenoid. J Chem Ecol 20(10):2721–2731Google Scholar
  104. 104.
    Miettinen SM, Piironen V, Tuorila H, Hyvönen L (2002) Electronic and human nose in the detection of aroma differences between strawberry ice cream of varying fat content. J Food Sci 67(1):425–430Google Scholar
  105. 105.
    Sim CO, Ahmad MN, Ismail Z, Othman AR, Noor NAM, Zaihidee EM (2003) Chemometric classification of herb—Orthosiphon stamineus according to its geographical origin using virtual chemical sensor based upon fast GC. Sensors 3(10):458–471Google Scholar
  106. 106.
    Lieberzeit PA, Gazda-Miarecka S, Halikias K, Schirk C, Kauling J, Dickert FL (2005) Imprinting as a versatile platform for sensitive materials–nanopatterning of the polymer bulk and surfaces. Sensors Actuators B Chem 111:259–263Google Scholar
  107. 107.
    Hayden O, Lieberzeit PA, Blaas D, Dickert FL (2006) Artificial antibodies for bioanalyte detection—sensing viruses and proteins. Adv Funct Materials 16(10):1269–1278Google Scholar
  108. 108.
    Scarpati ML, Scalzo RL, Vita G (1993) Olea europaea volatiles attractive and repellent to the olive fruit fly (Dacus oleae, Gmelin). J Chem Ecol 19(4):881–891Google Scholar
  109. 109.
    Dickert FL, Forth P, Lieberzeit P, Tortschanoff M (1998) Molecular imprinting in chemical sensing—detection of aromatic and halogenated hydrocarbons as well as polar solvent vapors. Fresenius J Anal Chem 360(7):759–762Google Scholar
  110. 110.
    Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sensors Actuators B 121:18–35Google Scholar
  111. 111.
    Sauerwald T, Skiera D, Kohl CD (2007) Selectivity enhancement of gas sensors using non-equilibrium polarization effects in metal oxide films. Appl Phys A: Materials Science and Processing 87(3):525–529Google Scholar
  112. 112.
    Kohl D, Heinert L, Bock J, Hofmann T, Schieberle P (2000) Systematic studies on responses of metal-oxide sensor surfaces to straight chain alkanes, alcohols, aldehydes, ketones, acids, and esters using the SOMMSA approach. Sensors Actuators B Chem 70(1):43–50Google Scholar
  113. 113.
    Wehrenfennig C, Schott M, Gasch T, Sauerwald T, Düring RA, Vilcinskas A et al (2012) Laboratory characterization of metal–oxide sensors intended for in situ analyses of pheromones–SOMMSA approach. Physica Status Solidi A 209(5):935–939Google Scholar
  114. 114.
    Heiland G, Kohl D (1985) Problems and possibilities of oxidic and organic semiconductor gas sensors. Sensors Actuators 8(3):227–233Google Scholar
  115. 115.
    Gramm A, Schütze A (2003) High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification. Sensors Actuators B Chem 95(1):58–65Google Scholar
  116. 116.
    Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sensors Actuators B Chem 5(1):7–19Google Scholar
  117. 117.
    Lai JKL, Shek CH, Lin GM (2003) Grain growth kinetics of nanocrystalline SnO2 for long-term isothermal annealing. Scr Mater 49(5):441–446Google Scholar
  118. 118.
    Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Mesoporous materials as gas sensors. Chemical Society Reviews 42:4036–4053Google Scholar
  119. 119.
    Schüler M, Sauerwald T, Reimann P, Schütze A (2012) Erkennung von flüchtigen organischen Verbindungen mit Hilfe von mikro-nanostrukturierten Sensoren 4. GMM Workshop Mikro-Nano-Integration, Berlin, Germany, 12–13 November 2012Google Scholar
  120. 120.
    Pekár S (2002) Differential effects of formaldehyde concentration and detergent on the catching efficiency of surface active arthropods by pitfall traps. Pedobiologia 46(6):539–547Google Scholar
  121. 121.
    Negri RM, Bernik DL (2008) Tracking the sex pheromone of codling moth against a background of host volatiles with an electronic nose. Crop Prot 27(10):1295–1302Google Scholar
  122. 122.
    Bouvet M (2006) Phthalocyanine-based field-effect transistors as gas sensors. Anal Bioanal Chem 384(2):366–373Google Scholar
  123. 123.
    Schöning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127(9):1137–1151Google Scholar
  124. 124.
    Schöning MJ, Schütz S, Schroth P, Weißbecker B, Steffen A, Kordoš P et al (1998) A BioFET on the basis of intact insect antennae. Sensors Actuators B Chem 47(1):235–238Google Scholar
  125. 125.
    Vaihinger S, Göpel W, Stetter JR (1991) Detection of halogenated and other hydrocarbons in air: response functions of catalyst/electrochemical sensor systems. Sensors Actuators B Chem 4(3):337–343Google Scholar
  126. 126.
    Bakker E (2004) Electrochemical sensors. Anal Chem 76(12):3285–3298Google Scholar
  127. 127.
    Piletsky SA, Turner AP (2002) Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 14(5):317–323Google Scholar
  128. 128.
    Pejcic B, De Marco R (2006) Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim Acta 51(28):6217–6229Google Scholar
  129. 129.
    Ziegler C, Göpel W, Hämmerle H, Hatt H, Jung G, Laxhuber L et al (1998) Bioelectronic noses: a status report. Part II. Biosens Bioelectron 13(5):539–571Google Scholar
  130. 130.
    Elosua C, Matias IR, Bariain C, Arregui FJ (2006) Volatile organic compound optical fiber sensors: a review. Sensors 6(11):1440–1465Google Scholar
  131. 131.
    Penza M, Cassano G, Aversa P, Cusano A, Cutolo A, Giordano M et al (2005) Carbon nanotube acoustic and optical sensors for volatile organic compound detection. Nanotechnology 16(11):2536–2547Google Scholar
  132. 132.
    Attygalle AB, Svatos A, Wilcox C, Voerman S (1995) Gas-phase infrared spectroscopy for determination of double-bond configuration of some polyunsaturated pheromones and related compounds. Anal Chem 67(9):1558–1567Google Scholar
  133. 133.
    Regnier FE, Law JH (1968) Insect pheromones. J Lipid Res 9(5):541–551Google Scholar
  134. 134.
    Fischnaller S, Dowell FE, Lusser A, Schlick-Steiner B, Steiner FM (2012) Non-destructive species identification of Drosophila obscura and D. subobscura (Diptera) using near-infrared spectroscopy. Fly 6(4):284–289Google Scholar
  135. 135.
    Pena A, Lozano C, Sanchez-Raya AJ (1998) Ethylene release under field conditions for the management of the olive bark beetle, Phloeotribus scarabaeoides. J Agri Entomol 15(1):23–12Google Scholar
  136. 136.
    Aziz MSI, Orr-Ewing AJ (2012) Development and application of an optical sensor for ethene in ambient air using near infrared cavity ring down spectroscopy and sample preconcentration. J Environ Monit 14:3094–3100Google Scholar
  137. 137.
    Wilson AD, Baietto M (2011) Advances in electronic-nose technologies developed for biomedical applications. Sensors 11(1):1105–1176Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christoph Wehrenfennig
    • 1
    • 2
  • Matthias Schott
    • 3
  • Tina Gasch
    • 3
  • Rolf Alexander Düring
    • 2
  • Andreas Vilcinskas
    • 3
    • 4
  • Claus-Dieter Kohl
    • 1
  1. 1.Institute of Applied PhysicsJLU GiessenGiessenGermany
  2. 2.Institute for Soil Science and Soil ConservationJLU GiessenGiessenGermany
  3. 3.Institute for Phytopathology and Applied ZoologyJLU GiessenGiessenGermany
  4. 4.Fraunhofer Institute for Molecular Biology and Applied Ecology IMEProject Group BioresourcesGiessenGermany

Personalised recommendations