Analytical and Bioanalytical Chemistry

, Volume 405, Issue 20, pp 6497–6509 | Cite as

Phoxonic crystals—a new platform for chemical and biochemical sensors

Research Paper

Abstract

A new sensor platform is based on so-called phoxonic crystals. Phoxonic crystals are structures designed for simultaneous control of photon and phonon propagation and interaction. They are characterized by a periodic spatial modulation of the dielectric constant as well as elastic properties on a common wavelength scale. Multiple scattering of photons and phonons results in a band gap where propagation of both waves is prohibited. The existence of photonic and phononic band gaps opens up opportunities for novel devices and functional materials. The usage of defect modes is an advantageous concept for measurement. The defect also acts as point of measurement. We show theoretically that the properties of the defect mode can be tailored to provide very high sensitivity to optical and acoustic properties of matter confined within a defect cavity or surrounding the defect or being adsorbed at the cavity surface. In this paper, we introduce the sensor platform and analyze the key features of the sensor transduction scheme. Experimental investigations using a macroscopic device support the theoretical findings.

Keywords

Phoxonic crystals Resonant sensor Refractive index Speed of sound 

References

  1. 1.
    Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059CrossRefGoogle Scholar
  2. 2.
    Lourtioz JM, Benisty H, Berger V, Gerard JM, Maystre D, Tchelnokov A (2008) Photonic crystals: towards nanoscale photonic devices. Springer, BerlinGoogle Scholar
  3. 3.
    Johnson SG, Fan S, Villeneuve PR, Joannopoulos J, Kolodziejski L (1999) Guided modes in photonic crystal slabs. Phys Rev B 60(8):5751–5758CrossRefGoogle Scholar
  4. 4.
    Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vib 158:377–382CrossRefGoogle Scholar
  5. 5.
    Gorishnyy T, Ullal CK, Maldovan M, Fytas G, Thomas EL (2005) Hypersonic phononic crystals. Phys Rev Lett 94:115501CrossRefGoogle Scholar
  6. 6.
    Maldovan M, Thomas EL (2006) Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl Phys Lett 88(25):251907CrossRefGoogle Scholar
  7. 7.
    Sadat-Saleh S, Benchabane S, Baida FI, Bernal MP, Laude V (2009) Tailoring simultaneous photonic and phononic band gaps. J Appl Phys 106(7):074912CrossRefGoogle Scholar
  8. 8.
    Pennec Y, Djafari Rouhani B, El Boudouti EH, Li C, El Hassouani Y, Vasseur JO, Papanikolaou N, Benchabane S, Laude V, Martinez A (2010) Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Opt Express 18(13):14301CrossRefGoogle Scholar
  9. 9.
    El Hassouani Y, Li C, Pennec Y, El Boudouti EH, Larabi H, Akjouj A, Bou Matar O, Laude V, Papanikolaou N, Martinez A, Djafari Rouhani B (2010) Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Phys Rev B 82:155405CrossRefGoogle Scholar
  10. 10.
    Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik JC, Lévêque G, Djafari-Rouhani B (2012) Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Appl Phys Lett 101:061109CrossRefGoogle Scholar
  11. 11.
    Laude V, Beugnot JC, Benchabane S, Pennec Y, Djafari-Rouhani B, Papanikolaou N, Escalante JM, Martinez A (2011) Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Opt Express 19:9690CrossRefGoogle Scholar
  12. 12.
    Hsiao FL, Hsieh CY, Hsieh HY, Chiu CC (2012) High-efficiency acousto-optical interaction in phoxonic nanobeam waveguide. Appl Phys Lett 100:171103CrossRefGoogle Scholar
  13. 13.
    Eichenfield M, Chan J, Camacho RM, Vahala KJ, Painter O (2009) Optomechanical crystals. Nature 462:78CrossRefGoogle Scholar
  14. 14.
    Gavartin E, Braive R, Sagnes I, Arcizet O, Beveratos A, Kippenberg TJ (2011) Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys Rev Lett 106:203902CrossRefGoogle Scholar
  15. 15.
    Schirhagl R, Latif U, Podlipna D, Blumenstock H, Dickert FL (2012) Natural and biomimetic materials for the detection of insulin. Anal Chem 84(9):3908–3913CrossRefGoogle Scholar
  16. 16.
    Schirhagl R, Qian J, Dickert FL (2012) Immunosensing with artificial antibodies in organic solvents or complex matrices. Sensors Actuators B 173:585–590CrossRefGoogle Scholar
  17. 17.
    Mustafa G, Hussain M, Iqbal N, Dickert FL, Lieberzeit PA (2012) Quartz crystal microbalance sensor based on affinity interactions between organic thiols and molybdenum disulfide nanoparticles. Sensors Actuators B 162(1):63–67CrossRefGoogle Scholar
  18. 18.
    Yaqub S, Latif U, Dickert FL (2011) Plastic antibodies as chemical sensor material for atrazine detection. Sensors Actuators B 160(1):227–233CrossRefGoogle Scholar
  19. 19.
    Schirhagl R, Seifner A, Husain FT, Cichna-Markl M, Lieberzeit PA, Dickert FL (2010) Antibodies and their replicae in microfluidic sensor systems—label-free quality assessment in food chemistry and medicine. Sensor Letters 8(3):399–404CrossRefGoogle Scholar
  20. 20.
    Birnbaumer GM, Lieberzeit PA, Richter L, Schirhagl R, Milnera M, Dickert FL, Bailey A, Ertl P (2009) Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab on a Chip 9(24):3549–3556CrossRefGoogle Scholar
  21. 21.
    Lieberzeit PA, Dickert FL (2007) Sensor technology and its application in environmental analysis. Anal Bioanal Chem 387(1):237–247CrossRefGoogle Scholar
  22. 22.
    Feng PXL (2011) “Nanoscale electromechanical resonators and oscillators” Tutorial, IEEE International Frequency Control SymposiumGoogle Scholar
  23. 23.
    Holmes MJ, Parker NG, Povey WJW (2011) Temperature dependence of bulk viscosity in water using acoustic spectroscopy. J Phys Conf Series 269:012011CrossRefGoogle Scholar
  24. 24.
    Stevenson AC, Araya-Kleinsteuber B, Sethi RS, Mehta HM, Lowe CR (2003) The acoustic spectrophonometer: a novel bioanalytical technique based on multifrequency acoustic devices. Analyst 128(9):1175–1180CrossRefGoogle Scholar
  25. 25.
    Sheikh S, Blaszykowski C, Thompson M (2011) Label-free detection of HIV-2 antibodies in serum with an ultra-high frequency acoustic wave sensor. Talanta 85(1):816–819CrossRefGoogle Scholar
  26. 26.
    Qiu C, Liu Z, Mei J, Ke M (2005) The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals. Solid State Commun 134:765–770CrossRefGoogle Scholar
  27. 27.
    Tanaka Y, Tomoyasu Y, Tamura I (2000) Band structures of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch. Phys Rev B 62:7387–7392CrossRefGoogle Scholar
  28. 28.
    Lucklum R, Li J (2009) Phononic crystals for liquid sensor applications. Meas Sci Technol 20:124014CrossRefGoogle Scholar
  29. 29.
    Lucklum R, Ke M, Zubtsov M (2012) Two-dimensional phononic crystal sensor based on a cavity mode. Sensors Actuators B 171–172:271–277CrossRefGoogle Scholar
  30. 30.
    Lucklum R, Zubtsov M, Kraych A, Pennec Y, Djafari-Rouhani B (2012) “Phoxonic Crystal Sensor”, SPIE Phontonics EuropeGoogle Scholar
  31. 31.
    Zubtsov M, Lucklum R (2010) A novel method for tuning the band gap structure of 2D phononic crystals. Proc IEEE Ultrason Symp: 515–518Google Scholar
  32. 32.
    Herráez JV, Belda R (2006) Refractive indices, densities and excess molar volumes of monoalcohols + water. J Solut Chem 35:1315–1328CrossRefGoogle Scholar
  33. 33.
    Kuhnkies R, Schaaffs W (1963) Acustica 13:407Google Scholar
  34. 34.
    Scullion MG, Krauss TF, Di Falco A (2011) High efficiency interface for coupling into slotted photonic crystal waveguides. IEEE Phot J 3:203–208CrossRefGoogle Scholar
  35. 35.
    Oseev A, Zubtsov M, Lucklum R (2013) Gasoline properties determination with phononic crystal cavity sensor. Sensor Actuators B (in press)Google Scholar
  36. 36.
    Lucklum R, Zubtsov M, Ke M (2012) Liquid sensor utilizing a regular phononic crystal with normal incidence of sound. Transact Ultrason, Ferroel, Freq Contr 59:463–471CrossRefGoogle Scholar
  37. 37.
    Lide DR (ed) CRC Handbook Chem Phys 84th ed., CRC Press, Boca Raton, FL, 6–166, 6–165, 6–169, 2003–2004Google Scholar
  38. 38.
    Zubtsov M, Lucklum R, Ke M, Oseev A, Grundmann R, Henning B, Hempel U (2012) 2D phononic crystal sensor with normal incidence of sound. Sensors and Actuators A 186:118–124CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ralf Lucklum
    • 1
  • Mikhail Zubtsov
    • 1
  • Aleksandr Oseev
    • 1
  1. 1.Otto-von-Guericke-University Magdeburg, Institute for Micro and Sensor SystemsMagdeburgGermany

Personalised recommendations