Analytical and Bioanalytical Chemistry

, Volume 405, Issue 20, pp 6511–6517 | Cite as

Use of shift gradient in the second dimension to improve the separation space in comprehensive two-dimensional liquid chromatography

  • Duxin Li
  • Oliver J. SchmitzEmail author
Research Paper


Comprehensive two-dimensional liquid chromatography (LC × LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC × LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC × LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7 %. The effective peak distribution area increased significantly, which produced better separation.


Comprehensive two-dimensional liquid chromatography Shift gradient Peak distribution Chinese herbal medicine 



The authors thank the China Scholarship Council (CSC) and the German Academic Exchange Service (DAAD) for funding. We also thank Agilent Technologies and SIM for providing some equipment and software and Phenomenex for the columns.


  1. 1.
    Erni F, Frei RW (1978) J Chromatogr A 149:561–569CrossRefGoogle Scholar
  2. 2.
    Stoll DR, Li X, Wang X, Carr PW, Porter SEG, Rutan SC (2007) J Chromatogr A 1168:3–43CrossRefGoogle Scholar
  3. 3.
    Guiochon G, Marchetti N, Mriziq K, Shalliker RA (2008) J Chromatogr A 1189:109–168CrossRefGoogle Scholar
  4. 4.
    Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L (2008) J Chromatogr A 1184:353–368CrossRefGoogle Scholar
  5. 5.
    Schoenmakers P, Marriott P, Beens J (2003) LCGC Eur 16:1–4Google Scholar
  6. 6.
    François I, de Villiers A, Sandra P (2006) J Sep Sci 29:492–498CrossRefGoogle Scholar
  7. 7.
    Jandera P, Hájek T, Česla P (2010) J Sep Sci 33:1382–1397CrossRefGoogle Scholar
  8. 8.
    Washburn MP, Wolters D, Yates JR 3rd (2001) Nat Biotechnol 19:242–247CrossRefGoogle Scholar
  9. 9.
    Stoll DR, Carr PW (2005) J Am Chem Soc 127:5034–5035CrossRefGoogle Scholar
  10. 10.
    Zhu S, Zhang X, Gao M, Yan G, Zhang X (2011) Se Pu 29:837–842Google Scholar
  11. 11.
    Berek D (2010) Anal Bioanal Chem 396:421–441CrossRefGoogle Scholar
  12. 12.
    Bedani F, Kok WT, Janssen H-G (2009) Anal Chim Acta 654:77–84CrossRefGoogle Scholar
  13. 13.
    Hu L, Chen X, Kong L, Su X, Ye M, Zou H (2005) J Chromatogr A 1092:191–198CrossRefGoogle Scholar
  14. 14.
    Chen X, Kong L, Su X, Fu H, Ni J, Zhao R, Zou H (2004) J Chromatogr A 1040:169–178CrossRefGoogle Scholar
  15. 15.
    Wang Y, Kong L, Lei X, Hu L, Zou H, Welbeck E, Bligh SWA, Wang Z (2009) J Chromatogr A 1216:2185–2191CrossRefGoogle Scholar
  16. 16.
    Ma S, Liang Q, Jiang Z, Wang Y, Luo G (2012) Talanta 97:150–156CrossRefGoogle Scholar
  17. 17.
    Guiochon G, Marchetti N, Mriziq K, Shalliker RA (2008) J Chromatogr A 2:1–2Google Scholar
  18. 18.
    Jandera P (2012) J Chromatogr A 14:112–129Google Scholar
  19. 19.
    Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC method development. Wiley, New YorkCrossRefGoogle Scholar
  20. 20.
    Jandera P, Hájek T, Česla P (2011) J Chromatogr A 1218:1995–2006CrossRefGoogle Scholar
  21. 21.
    Cacciola F, Jandera P, Hajdú Z, Česla P, Mondello L (2007) J Chromatogr A 1149:73–87CrossRefGoogle Scholar
  22. 22.
    Jandera P (2006) J Sep Sci 29:1763–1783CrossRefGoogle Scholar
  23. 23.
    Blahová E, Jandera P, Cacciola F, Mondello L (2006) J Sep Sci 29:555–566CrossRefGoogle Scholar
  24. 24.
    Kivilompolo M, Hyötyläinen T (2007) J Chromatogr A 1145:155–164CrossRefGoogle Scholar
  25. 25.
    Cacciola F, Jandera P, Mondello L (2007) J Sep Sci 30:462–474CrossRefGoogle Scholar
  26. 26.
    Cacciola F, Jandera P, Blahová E, Mondello L (2006) J Sep Sci 29:2500–2513CrossRefGoogle Scholar
  27. 27.
    Jandera P, Česla P, Hájek T, Vohralík G, Vyňuchalová K, Fischer J (2008) J Chromatogr A 1189:207–220CrossRefGoogle Scholar
  28. 28.
    Murahashi T (2003) Analyst 128:611–615CrossRefGoogle Scholar
  29. 29.
    Köhne AP, Dornberger U, Welsch T (1998) Chromatographia 48:9–16CrossRefGoogle Scholar
  30. 30.
    Venkatramani CJ, Zelechonok Y (2003) Anal Chem 75:3484–3494CrossRefGoogle Scholar
  31. 31.
    Gray MJ, Dennis GR, Slonecker PJ, Shalliker RA (2003) J Chromatogr A 1015:89–98CrossRefGoogle Scholar
  32. 32.
    Mnatsakanyan M, Stevenson PG, Conlan XA, Francis PS, Goodie TA, McDermott GP, Barnett NW, Shalliker RA (2010) Talanta 82:1358–1363CrossRefGoogle Scholar
  33. 33.
    Gilar M, Olivova P, Daly AE, Gebler JC (2005) Anal Chem 77:6426–6434CrossRefGoogle Scholar
  34. 34.
    Gilar M, Olivova P, Daly AE, Gebler JC (2005) J Sep Sci 28:1694–1703CrossRefGoogle Scholar
  35. 35.
    Cho WC (ed) (2011) Evidence-based anticancer materia medica. Springer, HeidelbergGoogle Scholar
  36. 36.
    Dolan JW, Snyder LR, Djordjevic NM, Hill DW, Waeghe TJ (1999) J Chromatogr A 857:1–20CrossRefGoogle Scholar
  37. 37.
    Dück R, Sonderfeld H, Schmitz OJ (2012) J Chromatogr A 1246:69–75CrossRefGoogle Scholar
  38. 38.
    Giddings JC (1984) Anal Chem 56:1258A–1270ACrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Applied Analytical Chemistry, Faculty of ChemistryUniversity of Duisburg-EssenEssenGermany

Personalised recommendations