Analytical and Bioanalytical Chemistry

, Volume 405, Issue 19, pp 6181–6196 | Cite as

Oligonucleotide optical switches for intracellular sensing

Part of the following topical collections:
  1. Optical Nanosensing in Cells


Fluorescence imaging coupled with nanotechnology is making possible the development of powerful tools in the biological field for applications such as cellular imaging and intracellular messenger RNA monitoring and detection. The delivery of fluorescent probes into cells and tissues is currently receiving growing interest because such molecules, often coupled to nanodimensional materials, can conveniently allow the preparation of small tools to spy on cellular mechanisms with high specificity and sensitivity. The purpose of this review is to provide an exhaustive overview of current research in oligonucleotide optical switches for intracellular sensing with a focus on the engineering methods adopted for these oligonucleotides and the more recent and fascinating techniques for their internalization into living cells. Oligonucleotide optical switches can be defined as specifically designed short nucleic acid molecules capable of turning on or modifying their light emission on molecular interaction with well-defined molecular targets. Molecular beacons, aptamer beacons, hybrid molecular probes, and simpler linear oligonucleotide switches are the most promising optical nanosensors proposed in recent years. The intracellular targets which have been considered for sensing are a plethora of messenger-RNA-expressing cellular proteins and enzymes, or, directly, proteins or small molecules in the case of sensing through aptamer-based switches. Engineering methods, including modification of the oligonucleotide itself with locked nucleic acids, peptide nucleic acids, or l-DNA nucleotides, have been proposed to enhance the stability of nucleases and to prevent false-negative and high background optical signals. Conventional delivery techniques are treated here together with more innovative methods based on the coupling of the switches with nano-objects.


Intracellular sensing Molecular beacon Aptamer Fluorescence Living cells Intracellular delivery 


  1. 1.
    Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Huang K, Martí AA (2012) Recent trends in molecular beacon design and applications. Anal Bioanal Chem 402:3091–3102CrossRefGoogle Scholar
  3. 3.
    Public Health Research Institute (2013) Molecular beacons.
  4. 4.
    Fang X, Li JJ, Perlette J, Tan W, Wang K (2000) Molecular beacons: novel fluorescent probes. Anal Chem 72:747a–753aCrossRefGoogle Scholar
  5. 5.
    Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8:547–553CrossRefGoogle Scholar
  6. 6.
    Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W (2008) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed 47:2–17CrossRefGoogle Scholar
  7. 7.
    Bao G, Rhee WJ, Tsourkas A (2009) Fluorescent probes for live-cell RNA detection. Annu Rev Biomed Eng 11:25–47CrossRefGoogle Scholar
  8. 8.
    Santangelo PJ (2009) Molecular beacons and related probes for intracellular RNA imaging. Nanomed Nanobiotechnol 2:11–19CrossRefGoogle Scholar
  9. 9.
    Armitage BA (2011) Imaging of RNA in live cells. Curr Opin Chem Biol 15:806–812CrossRefGoogle Scholar
  10. 10.
    Monroy-Contreras R, Vaca L (2011) Molecular beacons: powerful tools for imaging RNA in living cells. J Nucleic Acids 2011:741723CrossRefGoogle Scholar
  11. 11.
    Guo J, Ju J, Turro NJ (2012) Fluorescent hybridization probes for nucleic acid detection. Anal Bioanal Chem 402:3115–3125CrossRefGoogle Scholar
  12. 12.
    Algar WR, Massey M, Krull UJ (2009) The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. Trends Anal Chem 28:292–306CrossRefGoogle Scholar
  13. 13.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  14. 14.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  15. 15.
    Mascini M, Palchetti I, Tombelli S (2012) Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed 51:1316–1332CrossRefGoogle Scholar
  16. 16.
    Ferre-D’Amare AR, Doudna JA (1999) RNA folds: insights from recent crystal structures. Annu Rev Biophys Biomol Struct 28:57–73CrossRefGoogle Scholar
  17. 17.
    James W (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley & Sons Ltd, Chichester, pp 4848–4871Google Scholar
  18. 18.
    Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48:2672–2689CrossRefGoogle Scholar
  19. 19.
    Bruno JG, Carrillo MP, Phillips T, Hanson D, Bohmann JA (2011) DNA aptamer beacon assay for C-telopeptide and handheld fluorometer to monitor bone resorption. J Fluoresc 21:2021–2033CrossRefGoogle Scholar
  20. 20.
    Zhang JQ, Wang YS, Xue JH, He Y, Yang HX, Liang J, Shi LF, Xiao XL (2012) A gold nanoparticles-modified aptamer beacon for urinary adenosine detection based on structure-switching/fluorescence-"turning on" mechanism. J Pharm Biomed Anal 70:362–368CrossRefGoogle Scholar
  21. 21.
    Wu T, Biswas S, Dutta M, Stroscio MA (2011) Quantum-dot-based aptamer beacon for the detection of potassium ions. IEEE Trans Nanotechnol 10:991–995CrossRefGoogle Scholar
  22. 22.
    Chi CW, Lao YH, Li YS, Chen LC (2011) A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection. Biosens Bioelectron 15:3346–3352CrossRefGoogle Scholar
  23. 23.
    Tan X, Chen W, Lu S, Zhu Z, Chen T, Zhu G, You M, Tan W (2012) Molecular beacon aptamers for direct and universal quantitation of recombinant proteins from cell lysates. Anal Chem 84:8272–8276CrossRefGoogle Scholar
  24. 24.
    Liang Y, Zhang Z, Wei H, Hu Q, Deng J, Guo D, Cui Z, Zhang XE (2011) Aptamer beacons for visualization of endogenous protein HIV-1 reverse transcriptase in living cells. Biosens Bioelectron 28:270–276CrossRefGoogle Scholar
  25. 25.
    Kim JK, Choi K-J, Lee M, Jo M, Kim S (2012) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–217CrossRefGoogle Scholar
  26. 26.
    Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261CrossRefGoogle Scholar
  27. 27.
    Wang Y, Li Z, Hu D, Lin C-T, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276CrossRefGoogle Scholar
  28. 28.
    Nielsen LJ, Olsen LF, Ozalp VC (2010) Aptamers embedded in polyacrylamide nanoparticles: a tool for in vivo metabolite sensing. ACS Nano 4:4361–4370CrossRefGoogle Scholar
  29. 29.
    Tan X, Chen T, Xiong X, Mao Y, Zhu G, Yasun E, Li C, Zhu Z, Tan W (2012) Semiquantification of ATPin live cells using nonspecific desorption of DNA from grapheme oxide as the internal reference. Anal Chem 84:8622–8627CrossRefGoogle Scholar
  30. 30.
    Martinez K, Medley CD, Yang CJ, Tan W (2008) Investigation of the hybrid molecular probe for intracellular studies. Anal Bioanal Chem 391:983–991CrossRefGoogle Scholar
  31. 31.
    Juskowiak B (2011) Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 399:3157–3176CrossRefGoogle Scholar
  32. 32.
    Tang Z, Mallikaratchy P, Yang R, Kim Y, Zhu Z, Wang H, Tan W (2008) Aptamer switch probe based on intramolecular displacement. J Am Chem Soc 130:11268–11269CrossRefGoogle Scholar
  33. 33.
    Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129:15477–15479CrossRefGoogle Scholar
  34. 34.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308CrossRefGoogle Scholar
  35. 35.
    Wu CS, Peng L, You M, Han D, Chen T, Williams KR, Yang CJ, Tan W (2012) Engineering molecular beacons for intracellular imaging. Int J Mol Imaging 2012:501579Google Scholar
  36. 36.
    Li JJ, Tan W (2003) A real-time assay for DNA sticky-end pairing using molecular beacons. Anal Biochem 312:251–254CrossRefGoogle Scholar
  37. 37.
    Wang L, Yang CJ, Medley CD, Benner SA, Tan W (2005) Locked nucleic acid molecular beacons. J Am Chem Soc 127:15664–15665CrossRefGoogle Scholar
  38. 38.
    Østergaard ME, Cheguru P, Papasani MR, Hill RA, Hrdlicka PJ (2010) Glowing locked nucleic acids: brightly fluorescent probes for detection of nucleic acids in cells. J Am Chem Soc 132:14221–14228CrossRefGoogle Scholar
  39. 39.
    Catrina IE, Marras SA, Bratu DP (2012) Tiny molecular beacons: LNA/2'-O-methyl RNA chimeric probes for imaging dynamic mRNA processes in living cells. ACS Chem Biol 7:1586–1595CrossRefGoogle Scholar
  40. 40.
    Wu Y, Yang CJ, Moroz LL, Tan W (2008) Nucleic acid beacons for long-term real-time intracellular monitoring. Anal Chem 80:3025–3028CrossRefGoogle Scholar
  41. 41.
    Dong H, Ding L, Yan F, Ji H, Ju H (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32:3875–3882CrossRefGoogle Scholar
  42. 42.
    Yang CJ, Wang L, Wu Y, Kim Y, Medley CD, Lin H, Tan W (2007) Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons. Nucleic Acids Res 35:4030–4041CrossRefGoogle Scholar
  43. 43.
    Kam Y, Rubinstein A, Nissan A, Halle D, Yavin E (2012) Detection of endogenous K-ras mRNA in living cells at a single base resolution by a PNA molecular beacon. Mol Pharm 9:685–693CrossRefGoogle Scholar
  44. 44.
    Kummer S, Knoll A, Socher E, Bethge L, Herrmann A, Seitz O (2011) Fluorescence imaging of influenza H1N1 mRNA in living infected cells using single-chromophore FIT-PNA. Angew Chem Int Ed 50:1931–1934CrossRefGoogle Scholar
  45. 45.
    Swager TM (1998) The molecular wire approach to sensory signal amplification. Acc Chem Res 31:201–207CrossRefGoogle Scholar
  46. 46.
    Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W (2009) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed 48:856–870CrossRefGoogle Scholar
  47. 47.
    Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci USA 102:17278–17283CrossRefGoogle Scholar
  48. 48.
    Wu C, Yan L, Wang C, Lin H, Wang C, Chen X, Yang CJ (2010) A general excimer signaling approach for aptamer sensors. Biosens Bioelectron 25:2232–2237CrossRefGoogle Scholar
  49. 49.
    Yang CJ, Lin H, Tan W (2005) Molecular assembly of superquenchers in signaling molecular interactions. J Am Chem Soc 127:12772–12773CrossRefGoogle Scholar
  50. 50.
    Kim Y, Yang CJ, Tan W (2007) Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem. Nucleic Acids Res 35:7279–7287CrossRefGoogle Scholar
  51. 51.
    Ke G, Wang C, Ge Y, Zheng N, Zhu Z, Yang CJ (2012) L-DNA molecular beacon: a safe, stable, and accurate intracellular nano-thermometer for temperature sensing in living cells. J Am Chem Soc 134:18908–18911CrossRefGoogle Scholar
  52. 52.
    Wang C, Zhu Z, Song Y, Lin H, Yang CJ, Tan W (2011) Caged molecular beacons: controlling nucleic acid hybridization with light. Chem Commun 47:5708–5710CrossRefGoogle Scholar
  53. 53.
    Joshi KB, Vlachos A, Mikat V, Deller T, Heckel A (2012) Light-activatable molecular beacons with a caged loop sequence. Chem Commun 48:2746–2748CrossRefGoogle Scholar
  54. 54.
    Yang CJ, Martinez K, Lin H, Tan W (2006) Hybrid molecular probe for nucleic acid analysis in biological samples. J Am Chem Soc 128:9986–9987CrossRefGoogle Scholar
  55. 55.
    Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335:1194CrossRefGoogle Scholar
  56. 56.
    Villemejane J, Mir LM (2009) Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol 157:207–219CrossRefGoogle Scholar
  57. 57.
    Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45:971–979CrossRefGoogle Scholar
  58. 58.
    Bessodes M, Mignet N (2013) Lipids for nucleic acid delivery: synthesis and particle formation. Methods Mol Biol 948:67–84Google Scholar
  59. 59.
    Sokolova V, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed 47:1382–1395CrossRefGoogle Scholar
  60. 60.
    Perlette J, Tan W (2001) Real-time monitoring of intracellular mRNA hybridization inside single living cells. Anal Chem 73:5544–5550CrossRefGoogle Scholar
  61. 61.
    Nitin N, Santangelo PJ, Kim G, Nie S, Bao G (2004) Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res 32:e58CrossRefGoogle Scholar
  62. 62.
    Rhee WJ, Santangelo PJ, Jo H, Bao G (2008) Target accessibility and signal specificity in live-cell detection of BMP-4 mRNA using molecular beacons. Nucleic Acids Res 36:e30CrossRefGoogle Scholar
  63. 63.
    Rhee WJ, Bao G (2009) Simultaneous detection of mRNA and protein stem cell markers in live cells. BMC Biotechnol 9:30CrossRefGoogle Scholar
  64. 64.
    Kang WJ, Cho YL, Chae JR, Lee JD, Choi KJ, Kim S (2011) Molecular beacon-based bioimaging of multiple microRNAs during myogenesis. Biomaterials 32:1915–1922CrossRefGoogle Scholar
  65. 65.
    Kim MY, Kim J, Hah SS (2012) Poly(A)-targeting molecular beacons: fluorescence resonance energy transfer-based in vitro quantitation and time-dependent imaging in live cells. Anal Biochem 429:92–98CrossRefGoogle Scholar
  66. 66.
    Yao Q, Zhang AM, Ma H, Lin S, Wang XX, Sun JG, Chen ZT (2012) Novel molecular beacons to monitor microRNAs in non-small-cell lung cancer. Mol Cell Probes 26:182–187CrossRefGoogle Scholar
  67. 67.
    Chen T, Wu CS, Jimenez E, Zhu Z, Dajac JG, You M, Han D, Zhang X, Tan W (2013) DNA micelle flares for intracellular mRNA imaging and gene therapy. Angew Chem Int Ed 52:2012–2016CrossRefGoogle Scholar
  68. 68.
    Kim E, Yang J, Park J, Kim S, Kim NH, Yook JI, Suh JS, Haam S, Huh YM (2012) Consecutive targetable smart nanoprobe for molecular recognition of cytoplasmic microRNA in metastatic breast cancer. ACS Nano 6:8525–8535CrossRefGoogle Scholar
  69. 69.
    Chen AK, Behlke MA, Tsourkas A (2008) Efficient cytosolic delivery of molecular beacon conjugates and flow cytometric analysis of target RNA. Nucleic Acids Res 36:e69CrossRefGoogle Scholar
  70. 70.
    Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652CrossRefGoogle Scholar
  71. 71.
    Jiang QY, Lai LH, Shen J, Wang QQ, Xu FJ, Tang GP (2011) Gene delivery to tumor cells by cationic polymeric nanovectors coupled to folic acid and the cell-penetrating peptide octaarginine. Biomaterials 32:7253–7262CrossRefGoogle Scholar
  72. 72.
    Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040CrossRefGoogle Scholar
  73. 73.
    Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358CrossRefGoogle Scholar
  74. 74.
    Knipe JM, Peters JT, Peppas NA (2013) Theranostic agents for intracellular gene delivery with spatiotemporal imaging. Nano Today 8:21–38CrossRefGoogle Scholar
  75. 75.
    Liu G, Swierczewska M, Lee S, Chen X (2010) Functional nanoparticles for molecular imaging guided gene delivery. Nano Today 5:524–539CrossRefGoogle Scholar
  76. 76.
    Xing H, Wong NY, Xiang Y, Lu Y (2012) DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16:429–435CrossRefGoogle Scholar
  77. 77.
    Geszke-Moritz M, Moritz M (2013) Quantum dots as versatile probes in medical sciences: synthesis, modification and properties. Mater Sci Eng C 33:1008–1021CrossRefGoogle Scholar
  78. 78.
    Qi L, Gao X (2008) Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv 5(3):263–267CrossRefGoogle Scholar
  79. 79.
    Tsoi KM, Dai Q, Alman BA, Chan WC (2012) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46:662–671CrossRefGoogle Scholar
  80. 80.
    Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105CrossRefGoogle Scholar
  81. 81.
    Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980CrossRefGoogle Scholar
  82. 82.
    Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18(5):1391–1396CrossRefGoogle Scholar
  83. 83.
    Chen AK, Behlke MA, Tsourkas A (2007) Avoiding false-positive signals with nuclease-vulnerable molecular beacons in single living cells. Nucleic Acids Res 35:e105CrossRefGoogle Scholar
  84. 84.
    Yeh HY, Yates MV, Mulchandani A, Chen W (2010) Molecular beacon-quantum dot-Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. Chem Commun 46(22):3914–3916CrossRefGoogle Scholar
  85. 85.
    Papasani MR, Wang G, Hill RA (2012) Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomed Nanotechnol Biol Med 8:804–814CrossRefGoogle Scholar
  86. 86.
    Lévy R, Shaheen U, Cesbron Y, Sée V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1:4889Google Scholar
  87. 87.
    Rosi NL (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030CrossRefGoogle Scholar
  88. 88.
    Harry SR, Hicks DJ, Amiri KI, Wright DW (2010) Hairpin DNA coated gold nanoparticles as intracellular mRNA probes for the detection of tyrosinase gene expression in melanoma cells. Chem Commun 46:5557–5559CrossRefGoogle Scholar
  89. 89.
    Xue J, Shan L, Chen H, Li Y, Zhu H, Deng D, Qian Z, Achilefu S, Gu Y (2013) Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon. Biosens Bioelectron 41:71–77CrossRefGoogle Scholar
  90. 90.
    Qiao G, Gao Y, Yu Z, Zhuo L, Tang B (2011) Simultaneous detection of intracellular tumor mRNA with Bi-Color imaging based on a gold nanoparticle/molecular beacon. Chem Eur J 17:11210–11215CrossRefGoogle Scholar
  91. 91.
    Qiao G, Zhuo L, Gao Y, Yu Z, Li N, Tang B (2011) A tumor mRNA-dependent gold nanoparticle–molecular beacon carrier for controlled drug release and intracellular imaging. Chem Commun 47:7458–7460CrossRefGoogle Scholar
  92. 92.
    Jayagopal A, Halfpenny KC, Perez JW, Wright DW (2010) Hairpin DNA-functionalized gold colloids for the imaging of mRNA in live cells. J Am Chem Soc 132:9789–9796CrossRefGoogle Scholar
  93. 93.
    Prigodich AE, Randeria PS, Briley WE, Kim NJ, Daniel WL, Giljohann DA, Mirkin CA (2012) Multiplexed nanoflares: mRNA detection in live cells. Anal Chem 84:2062–2066CrossRefGoogle Scholar
  94. 94.
    Wu P, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for urnyl ion in living cells. J Am Chem Soc 135:5254–5257CrossRefGoogle Scholar
  95. 95.
    Conde J, Rosa J, de la Fuente JM, Baptista PV (2013) Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events. Biomaterials 34:2516–2523CrossRefGoogle Scholar
  96. 96.
    Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15:1765–1768CrossRefGoogle Scholar
  97. 97.
    Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 571–577Google Scholar
  98. 98.
    Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758:404–412CrossRefGoogle Scholar
  99. 99.
    Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomed 7:5361–5374Google Scholar
  100. 100.
    Wu Y, Phillips JA, Liu H, Yang R, Tan W (2008) Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2:2023–2028CrossRefGoogle Scholar
  101. 101.
    Lu CH, Zhu CL, Li J, Liu JJ, Chen X, Yang HH (2010) Using graphene to protect DNA from cleavage during cellular delivery. Chem Commun 46:3116–3118CrossRefGoogle Scholar
  102. 102.
    Kim H, Namgung R, Singha K, Oh IK, Kim WJ (2011) Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22:2558–2567CrossRefGoogle Scholar
  103. 103.
    Feng L, Zhang S, Liu Z (2011) Graphene based gene transfection. Nanoscale 3:1252–1257CrossRefGoogle Scholar
  104. 104.
    Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res. doi:10.1021/ar300159f Google Scholar
  105. 105.
    Piao Y, Liu F, Seo TS (2012) A novel molecular beacon bearing a graphite nanoparticle as a nanoquencher for in situ mRNA detection in cancer cells. ACS Appl Mater Interfaces 4:6785–6789CrossRefGoogle Scholar
  106. 106.
    Kihara T, Yoshida N, Kitagawa T, Nakamura C, Nakamura N, Miyake J (2010) Development of a novel method to detect intrinsic mRNA in a living cell by using a molecular beacon-immobilized nanoneedle. Biosens Bioelectron 26:1449–1454CrossRefGoogle Scholar
  107. 107.
    Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164CrossRefGoogle Scholar
  108. 108.
    do Hwang W, Ko HY, Lee JH, Kang H, Ryu SH, Song IC, Lee DS, Kim S (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51:98–105CrossRefGoogle Scholar
  109. 109.
    Ko HY, Choi KJ, Lee CH, Kim S (2011) A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin αvβ3 and tenascin-C proteins. Biomaterials 32:1130–1138CrossRefGoogle Scholar
  110. 110.
    Ai J, Li T, Li B, Xu Y, Li D, Liu Z, Wang E (2012) In situ labelling and imaging of cellular protein via a bi-functional anticancer aptamer and its fluorescent ligand. Anal Chim Acta 741:93–99CrossRefGoogle Scholar
  111. 111.
    Kang WJ, Ko MH, Lee DS, Kim S (2009) Bioimaging of geographically adjacent proteins in a single cell by quantum dot-based fluorescent resonance energy transfer. Proteomics Clin Appl 3:1383–1388Google Scholar
  112. 112.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefGoogle Scholar
  113. 113.
    Giannetti A, Tombelli S, Trono C, Ballestri M, Giambastiani G, Guerrini A, Sotgiu G, Tuci G, Varchi G, Baldini F (2013) Intracellular delivery of molecular beacons by PMMA nanoparticles and carbon nanotubes for mRNA sensing. Proc SPIE 8596:85960UCrossRefGoogle Scholar
  114. 114.
    Tyagi S, Alsmadi O (2004) Imaging native β-actin mRNA in motile fibroblasts. Biophys J 87:4153–4162CrossRefGoogle Scholar
  115. 115.
    Xiao J (2009) Single-molecule imaging in live cells. In: Hinterdorfer P, van Oijen A (eds) Handbook of single-molecule biophysics. Springer, New York, pp 43–94CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Istituto di Fisica Applicata Nello Carrara, Consiglio Nazionale delle RicercheSesto FiorentinoItaly

Personalised recommendations