Analytical and Bioanalytical Chemistry

, Volume 405, Issue 20, pp 6479–6487 | Cite as

Molecularly imprinted polymers as synthetic receptors for the QCM-D-based detection of l-nicotine in diluted saliva and urine samples

  • J. Alenus
  • A. Ethirajan
  • F. Horemans
  • A. Weustenraed
  • P. Csipai
  • J. Gruber
  • M. Peeters
  • T. J. Cleij
  • P. WagnerEmail author
Research Paper


Molecularly imprinted polymers (MIPs) are synthetic receptors that are able to specifically bind their target molecules in complex samples, making them a versatile tool in biosensor technology. The combination of MIPs as a recognition element with quartz crystal microbalances (QCM-D with dissipation monitoring) gives a straightforward and sensitive device, which can simultaneously measure frequency and dissipation changes. In this work, bulk-polymerized l-nicotine MIPs were used to test the feasibility of l-nicotine detection in saliva and urine samples. First, l-nicotine-spiked saliva and urine were measured after dilution in demineralized water and 0.1× phosphate-buffered saline solution for proof-of-concept purposes. l-nicotine could indeed be detected specifically in the biologically relevant micromolar concentration range. After successfully testing on spiked samples, saliva was analyzed, which was collected during chewing of either nicotine tablets with different concentrations or of smokeless tobacco. The MIPs in combination with QCM-D were able to distinguish clearly between these samples: This proves the functioning of the concept with saliva, which mediates the oral uptake of nicotine as an alternative to the consumption of cigarettes.


Schematics of the sample-preparation procedure for l-nicotine spiked saliva- and urine samples with various concentration levels

Open image in new window


Molecularly imprinted polymers l-nicotine Nicotine tablets Smokeless tobacco Quartz crystal microbalance Dissipation monitoring 



This work is supported by an IMEC Ph.D. Fellowship (J. Alenus), by the Life-Science Initiative of the Province of Limburg (M. Peeters), and by the Internationalization Program of Universidade de São Paulo, Brazil (P. Csipai). The authors also would like to thank H. Penxten, J. Soogen, C. Willems, and J. Baccus cordially for technical assistance.


  1. 1.
    Cormack PA, Elorza AZ (2004) Molecularly imprinted polymers: synthesis and characterisation. J Chromatogr B 804:173–182CrossRefGoogle Scholar
  2. 2.
    Batra D, Shea KJ (2003) Combinatorial methods in molecular imprinting. Curr Opin Chem Biol 3:434–442CrossRefGoogle Scholar
  3. 3.
    Sellergren B (2000) Imprinted polymers with memory for small molecules, proteins, or crystals. Angew Chem Int Ed 6:1031–1037CrossRefGoogle Scholar
  4. 4.
    Mayes AG, Whitcombe MJ (2005) Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv Drug Deliv Rev 12:1742–1778CrossRefGoogle Scholar
  5. 5.
    Dong J, Gao N, Peng Y, Guo C, Lv Z, Wang Y et al (2012) Surface plasmon resonance sensor for profenofos detection using molecularly imprinted thin film as recognition element. Food Control 2:543–549CrossRefGoogle Scholar
  6. 6.
    Wei C, Zhou H, Zhou J (2011) Ultrasensitively sensing acephate using molecular imprinting techniques on a surface plasmon resonance sensor. Talanta 5:1422–1427CrossRefGoogle Scholar
  7. 7.
    Tsuru N, Kikuchi M, Kawaguchi H, Shiratori S (2006) A quartz crystal microbalance sensor coated with MIP for “Bisphenol A” and its properties. Thin Solid Films 1–2:380–385CrossRefGoogle Scholar
  8. 8.
    Horemans F, Alenus J, Bongaers E, Weustenraed A, Thoelen R, Duchateau J et al (2010) MIP-based sensor platforms for the detection of histamine in the nano- and micromolar range in aqueous media. Sensors Actuators B Chem 2:392–398CrossRefGoogle Scholar
  9. 9.
    Piletsky SA, Alcock S, Turner AP (2001) Molecular imprinting: at the edge of the third millennium. Trends Biotechnol 1:9–12CrossRefGoogle Scholar
  10. 10.
    Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron 5:1166–1172CrossRefGoogle Scholar
  11. 11.
    Sun H, Mo ZH, Choy JTS, Zhu DR, Fung YS (2008) Piezoelectric quartz crystal sensor for sensing taste-causing compounds in food. Sensors Actuators B Chemical 1:148–158CrossRefGoogle Scholar
  12. 12.
    Jiang X, Zhao C, Jiang N, Zhang H, Liu M (2008) Selective solid-phase extraction using molecular imprinted polymer for the analysis of diethylstilbestrol. Food Chem 3:1061–1067CrossRefGoogle Scholar
  13. 13.
    Bereczki A, Tolokán A, Horvai G, Horváth V, Lanza F, Hall AJ et al (2001) Determination of phenytoin in plasma by molecularly imprinted solid-phase extraction. J Chromatogr A 1–2:31–38Google Scholar
  14. 14.
    Masqué N, Marcé R, Borrull F (2001) Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction. TrAC Trends Anal Chem 9:477–486CrossRefGoogle Scholar
  15. 15.
    Ansell RJ, Kriz D, Mosbach K (1996) Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors. Curr Opin Biotechnol 1:89–94CrossRefGoogle Scholar
  16. 16.
    Huang J, Xing X, Zhang X, He X, Lin Q, Lian W et al (2011) A molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine. Food Res Int 1:276–281CrossRefGoogle Scholar
  17. 17.
    Lin TY, Hu CH, Chou TC (2004) Determination of albumin concentration by MIP-QCM sensor. Biosens Bioelectron 1:75–81CrossRefGoogle Scholar
  18. 18.
    Valero-Navarro A, Salinas-Castillo A, Fernández-Sánchez JF, Segura-Carretero A, Mallavia R, Fernández-Gutiérrez A (2009) The development of a MIP-optosensor for the detection of monoamine naphthalenes in drinking water. Biosens Bioelectron 7:2305–2311CrossRefGoogle Scholar
  19. 19.
    Haupt K, Mosbach K (1998) Plastic antibodies: developments and applications. Trends Biotechnol 11:468–475CrossRefGoogle Scholar
  20. 20.
    Peeters M, Troost FJ, van Grinsven B, Horemans F, Alenus J, Murib MS et al (2012) MIP-based biomimetic sensor for the electronic detection of serotonin in human blood plasma. Sensors Actuators B Chem 17:602–610CrossRefGoogle Scholar
  21. 21.
    Shi H, Tsai W-B, Garrison MD, Ferrari S, Ratner BD (1999) Template-imprinted nanostructured surfaces for protein recognition. Nature 6728:593–597Google Scholar
  22. 22.
    Lu C-H, Zhang Y, Tang S-F, Fang Z-B, Yang H-H, Chen X et al (2012) Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron 31(1):439–444CrossRefGoogle Scholar
  23. 23.
    Ogiso M, Minoura N, Shinbo T, Shimizu T (2007) DNA detection system using molecularly imprinted polymer as the gel matrix in electrophoresis. Biosens Bioelectron 9–10:1974–1981CrossRefGoogle Scholar
  24. 24.
    Hayden O, Bindeus R, Haderspöck C, Mann KJ, Wirl B, Dickert FL (2003) Mass-sensitive detection of cells, viruses and enzymes with artificial receptors. Sensors Actuators B Chem 1–3:316–319CrossRefGoogle Scholar
  25. 25.
    Bongaers E, Alenus J, Horemans F, Weustenraed A, Lutsen L, Vanderzande D et al (2010) A MIP–based biomimetic sensor for the impedimetric detection of histamine in different pH environments. Phys Status Solidi A 4:837–843CrossRefGoogle Scholar
  26. 26.
    Thoelen R, Vansweevelt R, Duchateau J, Horemans F, D’Haen J, Lutsen L et al (2008) A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosens Bioelectron 6:913–918CrossRefGoogle Scholar
  27. 27.
    Patel AK, Sharma PS, Prasad BB (2010) Trace-level sensing of creatine in real sample using a zwitterionic molecularly imprinted polymer brush grafted to sol–gel modified graphite electrode. Thin Solid Films 10:2847–2853CrossRefGoogle Scholar
  28. 28.
    Prasad BB, Srivastava S, Tiwari K, Sharma PS (2009) Trace-level sensing of dopamine in real samples using molecularly imprinted polymer-sensor. Biochem Eng J 2–3:232–239CrossRefGoogle Scholar
  29. 29.
    Zander A, Findlay P, Renner T, Sellergren B, Swietlow A (1998) Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid phase extraction. Anal Chem 15:3304–3314CrossRefGoogle Scholar
  30. 30.
    Neal LB (1997) The role of nicotine in smoking-related cardiovascular disease. Prev Med 4:412–417Google Scholar
  31. 31.
    Stead LF, Perera R, Mant D, Lancaster T (2008) Nicotine replacement therapy for smoking cessation (review). Cochrane Database of Systematic Reviews 1: article number CD000146Google Scholar
  32. 32.
    Beard E, Michie S, Fidler J, West R (2013) Use of nicotine replacement therapy in situations involving temporary abstinence from smoking: a national survey of English smokers. Addict Behav 38:1876–1879CrossRefGoogle Scholar
  33. 33.
    Hoffmann D, Djordjevic MV, Hoffmann I (1997) The changing cigarette. Prev Med 4:427–434CrossRefGoogle Scholar
  34. 34.
    Schrek R, Baker LA, Ballard GP, Dolgoff S (1950) Tobacco smoking as an etiologic factor in disease. I. Cancer. Cancer Res 1:49–58Google Scholar
  35. 35.
    Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 6:1191Google Scholar
  36. 36.
    Mayer AS, Newman LS (2001) Genetic and environmental modulation of chronic obstructive pulmonary disease. Respir Physiol 1:3–11CrossRefGoogle Scholar
  37. 37.
    Ambrose JA, Barua RS (2004) The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol 10:1731–1737CrossRefGoogle Scholar
  38. 38.
    Bergström J (2004) Tobacco smoking and chronic destructive periodontal disease. Odontology 1:1–8CrossRefGoogle Scholar
  39. 39.
    Yang XL, Luo MB, Ding JH (2007) Rapid determination of nicotine in saliva by liquid phase microextraction-high performance liquid chromatography. Chin J Anal Chem 2:171–174CrossRefGoogle Scholar
  40. 40.
    Robson N, Bond AJ, Wolff K (2012) Salivary nicotine and cotinine concentrations in unstimulated and stimulated saliva. SSRN eLibrary. Afr J Pharm Pharacol 4(2):061–065. Available from: Accessed Feb 2010
  41. 41.
    Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys A Hadrons Nuclei 2:206–222CrossRefGoogle Scholar
  42. 42.
    Reimhult K, Yoshimatsu K, Risveden K, Chen S, Ye L, Krozer A (2008) Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles. Biosens Bioelectron 12:1908–1914CrossRefGoogle Scholar
  43. 43.
    Alenus J, Galar P, Ethirajan A, Horemans F, Weustenraed A, Cleij TJ et al (2012) Detection of L–nicotine with dissipation mode quartz crystal microbalance using molecular imprinted polymers. Phys Status Solidi A 5:905–910CrossRefGoogle Scholar
  44. 44.
    Behera D, Uppal R, Majumdar S (2003) Urinary levels of nicotine & cotinine in tobacco users. Indian J Med Res 118:129–133Google Scholar
  45. 45.
    Henningfield JE, Radzius A, Cone EJ (1995) Estimation of available nicotine content of six smokeless tobacco products. Tob Control 1:57–61CrossRefGoogle Scholar
  46. 46.
    Peeters M, Csipai P, Geerets B, Weustenraed A, van Grinsven B, Gruber J, et al (2013) Heat-transfer based detection of l-nicotine, histamine, and serotonin using molecularly imprinted polymers as biomimetic receptors. Analytical and Bioanalytical Chemistry. doi: 10.1007/s00216-013-7024-9

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Alenus
    • 1
  • A. Ethirajan
    • 1
  • F. Horemans
    • 1
  • A. Weustenraed
    • 1
  • P. Csipai
    • 1
    • 2
  • J. Gruber
    • 2
  • M. Peeters
    • 1
    • 3
  • T. J. Cleij
    • 1
  • P. Wagner
    • 1
    • 3
    Email author
  1. 1.Institute for Materials Research (IMO)Hasselt UniversityDiepenbeekBelgium
  2. 2.Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  3. 3.Division IMOMECIMECDiepenbeekBelgium

Personalised recommendations