Analytical and Bioanalytical Chemistry

, Volume 405, Issue 20, pp 6563–6572 | Cite as

Binding of a natural anthocyanin inhibitor to influenza neuraminidase by mass spectrometry

  • Kavya Swaminathan
  • Jeffrey C. Dyason
  • Andrea Maggioni
  • Mark von Itzstein
  • Kevin M. DownardEmail author
Research Paper


The binding of a natural anthocyanin to influenza neuraminidase has been studied employing mass spectrometry and molecular docking. Derived from a black elderberry extract, cyanidin-3-sambubiocide has been found to be a potent inhibitor of sialidase activity. This study reveals the molecular basis for its activity for the first time. The anthocyanin is shown by parallel experimental and computational approaches to bind in the so-called 430-cavity in the vicinity of neuraminidase residues 356–364 and 395–432. Since this antiviral compound binds remote from Asp 151 and Glu 119, two residues known to regulate neuraminidase resistance, it provides the potential for the development of a new class of antivirals against the influenza virus without this susceptibility.


Neuraminidase Inhibitor Influenza Anthocyanin Mass spectrometry Molecular docking 



This work was supported by an Australian Research Council Discovery Project Grant (DP110101702) awarded to Kevin Downard that also provides scholarship support for Kavya Swaminathan. Kevin Downard thanks Mark von Itzstein for allowing him to spend a period of his sabbatical at the Institute for Glycomics at Griffith University to initiate this project.


  1. 1.
    Layne SP, Monto AS, Taubenberger JK (2009) Pandemic influenza: an inconvenient mutation. Science 323:1560–1561CrossRefGoogle Scholar
  2. 2.
    Durando P, Iudici R, Alicino C, Alberti M, de Florentis D, Ansaldi F, Icardi G (2011) Intradermal influenza vaccine and new devices: a promising chance for vaccine improvement. Human Vaccines 7:29–40CrossRefGoogle Scholar
  3. 3.
    Pizzorno A, Bouhy X, Abed Y, Boivin G (2011) Generation and characterization of recombinant pandemic influenza A(H1N1)viruses resistant to neuraminidase inhibitors. J Infect Dis 203:25–31CrossRefGoogle Scholar
  4. 4.
    Smith BJ, Colman PM, Von Itzstein M, Danylec B, Varghese JN (2001) Analysis of inhibitor binding in influenza virus neuraminidase. Protein Sci 10:689–696CrossRefGoogle Scholar
  5. 5.
    von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, Colman PM, Vargehese JN, Ryans DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423CrossRefGoogle Scholar
  6. 6.
    Lew W, Chen X, Kim CU (2000) Discovery and development of GS 4104 (oseltamivir) an orally active influenza neuraminidase inhibitor. Curr Med Chem 7:663–672CrossRefGoogle Scholar
  7. 7.
    Air GM, Laver WG (1989) The neuraminidase of influenza virus. Proteins 6:341–356CrossRefGoogle Scholar
  8. 8.
    Von Itzstein M, Thomson R (2009) Anti-influenza drugs: the development of sialidase inhibitors. Handb Exp Pharmacol 189:111–154CrossRefGoogle Scholar
  9. 9.
    Monto AS, Fleming D, Henry D, De Groot R, Makela M, Klein T, Elliott M, Keene O, Man C (1999) Efficacy and safety of the neuraminidase inhibitor zanamivir in the treatment of influenza A and B virus infections. J Infect Dis 180:254–261CrossRefGoogle Scholar
  10. 10.
    Treanor JJ, Hayden FG, Vrooman PS, Barbarash R, Bettis R, Riff D, Singh S, Kinnersley N, Ward P, Mills RG (2000) Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: a randomized controlled trial. U.S. Oral Neuraminidase Study Group. J Am Med Assoc 283:1016–1024CrossRefGoogle Scholar
  11. 11.
    Moss RB, Davey RT, Steigbigel RT, Fang F (2010) Targeting pandemic influenza: a primer on influenza antivirals and drug resistance. J Antimicrob Chemother 65:1086–1093CrossRefGoogle Scholar
  12. 12.
    Yen HL, Herlocher LM, Hoffmann E, Matrosovich MN, Monto AS, Webster RG, Govorkova EA (2005) Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob Agents Chemother 49:4075–4084CrossRefGoogle Scholar
  13. 13.
    Bloom JD, Gong LI, Baltimore D (2010) Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328:1272–1275CrossRefGoogle Scholar
  14. 14.
    Moscona A (2005) Oseltamivir resistance—disabling our influenza defenses. N Engl J Med 353:2633–2636CrossRefGoogle Scholar
  15. 15.
    McKimm-Breschkin J, Trivedi T, Hampson A, Hay A, Klimov A, Tashiro M, Hayden F, Zambon M (2003) Neuraminidase sequence analysis and susceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir. Antimicrob Agents Chemother 47:2264–2272CrossRefGoogle Scholar
  16. 16.
    Hauge SH, Dudman S, Borgen K, Lackenby A, Hungnes O (2009) Oseltamivir-resistant influenza viruses A (H1N1), Norway, 2007–08. Emerg Infect Dis 15:155CrossRefGoogle Scholar
  17. 17.
    Moscona A (2009) Global transmission of oseltamivir-resistant influenza. N Engl J Med 360:953–956CrossRefGoogle Scholar
  18. 18.
    World Health Organization (2010) Oseltamivir resistance weekly update (August 2010)Google Scholar
  19. 19.
    van der Vries E, Stelma FF, Boucher CAB (2010) Emergence of multidrug-resistant pandemic influenza A (H1N1) virus. N Engl J Med 363:1381–1382CrossRefGoogle Scholar
  20. 20.
    Birnkrant D, Cox E (2009) The emergency use authorization of peramivir for treatment of 2009 H1N1 influenza. N Engl J Med 361:2204–2207CrossRefGoogle Scholar
  21. 21.
    Vavricka CJ, Li Q, Wu Y, Qi J, Wang M, Liu Y, Gao F, Liu J, Feng E, He J (2011) Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathog 7:e1002249CrossRefGoogle Scholar
  22. 22.
    Hurt AC, Holien JK, Parker MW, Barr IG (2009) Oseltamivir resistance and the H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic influenza viruses. Drugs 69:2523–2531CrossRefGoogle Scholar
  23. 23.
    Lai JC, Garcia JM, Dyason JC, Bohm R, Madge PD, Rose FJ, Nicholls JM, Peiris JS, Haselhorst T, von Itzstein M (2012) A secondary sialic acid binding site on influenza virus neuraminidase: fact or fiction? Angew Chem Int Ed Engl 51:2221–2224CrossRefGoogle Scholar
  24. 24.
    Dao TT, Nguyen PH, Lee HS, Kim E, Park J, Lim SI, Oh WK (2011) Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg Med Chem Lett 21:294–298CrossRefGoogle Scholar
  25. 25.
    Guo CT, Takahashi T, Bukawa W, Takahashi N, Yagi H, Kato K, Hidari KIPJ, Miyamoto D, Suzuki T, Suzuki Y (2006) Edible bird’s nest extract inhibits influenza virus infection. Antiviral Res 70:140–146CrossRefGoogle Scholar
  26. 26.
    Kirchmair J, Rollinger JM, Liedl KR, Seidel N, Krumbholz A, Schmidtke M (2011) Novel neuraminidase inhibitors: identification, biological evaluation and investigations of the binding mode. Future 3:437–450Google Scholar
  27. 27.
    Liu AL, Liu B, Qin HL, Lee SM, Wang YT, Du GH (2008) Anti-influenza virus activities of flavonoids from the medicinal plant Elsholtzia rugulosa. Planta Med Natural Prod Med Plant Res 74:847–851CrossRefGoogle Scholar
  28. 28.
    Liu AL, Wang HD, Lee SMY, Wang YT, Du GH (2008) Structure–activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bio Med Chem 16:7141–7147CrossRefGoogle Scholar
  29. 29.
    Miki K, Nagai T, Suzuki K, Tsujimura R, Koyama K, Kinoshita K, Furuhata K, Yamada H, Takahashi K (2007) Anti-influenza virus activity of biflavonoids. Bio Med Chem Lett 17:772–775CrossRefGoogle Scholar
  30. 30.
    Zakay-Rones Z, Varsano N, Zlotnik M, Manor O, Regev L, Schlesinger M, Mumcuoglu M (1995) Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucas nigra L.) during an outbreak of influenza B Panama. J Altern Comp Med 1:361–369CrossRefGoogle Scholar
  31. 31.
    Nagai T, Miyaichi Y, Tomimori T, Suzuki Y, Yamada H (1992) Anti-influenza virus activity of plant flavonoids having inhibitory activity against influenza virus sialidase. Antiviral Res 19:207–217CrossRefGoogle Scholar
  32. 32.
    Nagai T, Miyaichi Y, Tomimori T, Suzuki Y, Yamada H (1990) Inhibition of influenza virus sialidase and anti-influenza virus activity by plant flavonoids. Chem Pharm Bull 38:1329–1332CrossRefGoogle Scholar
  33. 33.
    Middleton E Jr, Kandaswami C (1992) Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43:1167–1179CrossRefGoogle Scholar
  34. 34.
    Netzel M, Strass G, Herbst M, Dietrich H, Bitsch R, Bitsch I, Frank T (2005) The excretion and biological antioxidant activity of elderberry antioxidants in healthy humans. Food Res Intl 38:905–910CrossRefGoogle Scholar
  35. 35.
    Lu SJ, Chong FC (2012) Combining molecular docking and molecular dynamics to predict the binding modes of flavonoid derivatives with the neuraminidase of the 2009 H1N1 influenza A virus. Int J Mol Sci 13:4496–4507CrossRefGoogle Scholar
  36. 36.
    Zakay-Rones Z, Thom E, Wollan T, Wadstein JJ (2004) Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. Int Med Res 32:132–140CrossRefGoogle Scholar
  37. 37.
    Krawitz C, Mraheil MA, Stein M, Imirzalioglu C, Domann E, Pleschka S, Hain T (2011) Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Comp Altern Med 11:16CrossRefGoogle Scholar
  38. 38.
    Kiselar JG, Downard KM (1999) Direct identification of protein epitopes by mass spectrometry without immobilization of antibody and isolation of antibody–peptide complexes. Anal Chem 71:1792–1799CrossRefGoogle Scholar
  39. 39.
    Kiselar JG, Downard KM (1999) Antigenic surveillance of the influenza virus by mass spectrometry. Biochemistry 38:14185–14191CrossRefGoogle Scholar
  40. 40.
    Morrissey B, Downard KM (2006) A proteomics approach to survey the antigenicity of the influenza virus by mass spectrometry. Proteomics 6:2034–2041CrossRefGoogle Scholar
  41. 41.
    Morrissey B, Streamer M, Downard KM (2007) Antigenic characterisation of H3N2 subtypes of the influenza virus by mass spectrometry. J Virol Methods 145:106–114CrossRefGoogle Scholar
  42. 42.
    Schwahn AB, Downard KM (2009) Antigenicity of a type A influenza virus through comparison of hemagglutination inhibition and mass spectrometry immunoassays. J Immunoass Immunochem 30:245–261CrossRefGoogle Scholar
  43. 43.
    Swaminathan K, Downard KM (2012) Anti-viral inhibitor binding to influenza neuraminidase by MALDI mass spectrometry. Anal Chem 84:3725–3730CrossRefGoogle Scholar
  44. 44.
    Gattiker A, Bienvenut WV, Bairoch A, Gasteiger E (2002) FindPept, a tool to identify unmatched masses in peptide mass fingerprinting protein identification. Proteomics 2:1435–1444CrossRefGoogle Scholar
  45. 45.
    Ho JWK, Morrissey B, Downard KM (2007) A computer algorithm for the identification of protein interactions from the spectra of masses (PRISM). J Am Soc Mass Spectrom 18:563–566CrossRefGoogle Scholar
  46. 46.
    Li Q, Qi J, Zhang W, Vavricka CJ, Shi Y, Wei J, Feng E, Shen J, Chen J, Liu D, He J, Yan J, Liu H, Jiang H, Teng M, Li X, Gao GF (2010) The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol 17:1266–1268CrossRefGoogle Scholar
  47. 47.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791CrossRefGoogle Scholar
  48. 48.
    Hartshorn MJ (2002) AstexViewer: a visualisation aid for structure-based drug design. J Comput Aided Mol Des 16:871–881CrossRefGoogle Scholar
  49. 49.
    Chong AKJ, Pegg MS, von Itzstein M (1991) Influenza virus sialidase: effect of calcium on steady-state kinetic parameters. Biochim Biophys Acta 1077:65–71CrossRefGoogle Scholar
  50. 50.
    Potier M, Mameli L, Bélisle M, Dallaire L, Melançon SB (1979) Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal Biochem 94:287–296CrossRefGoogle Scholar
  51. 51.
    Ferraris O, Kessler N, Lina B (2005) Sensitivity of influenza viruses to zanamivir and oseltamivir: a study performed on viruses circulating in France prior to the introduction of neuraminidase inhibitors in clinical practice. Antiviral Res 68:43–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kavya Swaminathan
    • 1
  • Jeffrey C. Dyason
    • 2
  • Andrea Maggioni
    • 2
  • Mark von Itzstein
    • 2
  • Kevin M. Downard
    • 1
    Email author
  1. 1.School of Molecular BioscienceUniversity of SydneySydneyAustralia
  2. 2.Institute for GlycomicsGriffith UniversityQueenslandAustralia

Personalised recommendations