Analytical and Bioanalytical Chemistry

, Volume 405, Issue 19, pp 6165–6180 | Cite as

Plasmonic nanoprobes for intracellular sensing and imaging

  • Hsiangkuo Yuan
  • Janna K. Register
  • Hsin-Neng Wang
  • Andrew M. Fales
  • Yang Liu
  • Tuan Vo-Dinh
Review
Part of the following topical collections:
  1. Optical Nanosensing in Cells

Abstract

Recent advances in integrating nanotechnology and optical microscopy offer great potential in intracellular applications with improved molecular information and higher resolution. Continuous efforts in designing nanoparticles with strong and tunable plasmon resonance have led to new developments in biosensing and bioimaging, using surface-enhanced Raman scattering and two-photon photoluminescence. We provide an overview of the nanoprobe design updates, such as controlling the nanoparticle shape for optimal plasmon peak position; optical sensing and imaging strategies for intracellular nanoparticle detection; and addressing practical challenges in cellular applications of nanoprobes, including the use of targeting agents and control of nanoparticle aggregation.

Figure

Plasmonic nanoprobe characterization (TEM, simulation) and applications in pH sensing, SERS mapping, and TPL imaging

Keywords

Plasmonic Nanoparticle Surface-enhanced Raman scattering Two-photon photoluminescence Biosensing Cellular imaging 

References

  1. 1.
    Periasamy A (2001) Methods in cellular imaging. Oxford University Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng J-X, Huang B, Fang N (2013) Single cell optical imaging and spectroscopy. Chem Rev. doi:10.1021/cr300336e Google Scholar
  3. 3.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1369–1377. doi:10.1038/nbt899 CrossRefGoogle Scholar
  4. 4.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796. doi:10.1038/nmeth929 CrossRefGoogle Scholar
  5. 5.
    Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943. doi:10.1038/nrm2531 CrossRefGoogle Scholar
  6. 6.
    Kievit FM, Zhang M (2011) Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23(36):H217–H247. doi:10.1002/adma.201102313 CrossRefGoogle Scholar
  7. 7.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. doi:10.1038/nmeth.1248 CrossRefGoogle Scholar
  8. 8.
    Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging☆. Adv Drug Deliv Rev 60(11):1226–1240. doi:10.1016/j.addr.2008.03.015 CrossRefGoogle Scholar
  9. 9.
    Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18. doi:10.1021/nl0347334 CrossRefGoogle Scholar
  10. 10.
    Liu Y, Tu D, Zhu H, Ma E, Chen X (2013) Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale 5(4):1369–1384. doi:10.1039/c2nr33239f CrossRefGoogle Scholar
  11. 11.
    Liu Z, Yang K, Lee ST (2011) Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 21(3):586–598. doi:10.1039/C0JM02020F CrossRefGoogle Scholar
  12. 12.
    Li B, Cheng Y, Liu J, Yi C, Brown AS, Yuan H, Vo-Dinh T, Fischer MC, Warren WS (2012) Direct optical imaging of graphene in vitro by nonlinear femtosecond laser spectral reshaping. Nano Lett 12(11):5936–5940. doi:10.1021/nl303358p CrossRefGoogle Scholar
  13. 13.
    Rosen JE, Yoffe S, Meerasa A (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 2(5):2–12. doi:10.4172/2157-7439.1000115 Google Scholar
  14. 14.
    Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ (2012) Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv 9(10):1225–1243. doi:10.1517/17425247.2012.716824 CrossRefGoogle Scholar
  15. 15.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779. doi:10.1039/c1cs15237h CrossRefGoogle Scholar
  16. 16.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779. doi:10.1021/cr2001178 CrossRefGoogle Scholar
  17. 17.
    Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS (2011) Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett 11(10):4029–4036. doi:10.1021/nl202559p CrossRefGoogle Scholar
  18. 18.
    Cho EC, Glaus C, Chen J, Welch MJ, Xia Y (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16(12):561–573. doi:10.1016/j.molmed.2010.09.004 CrossRefGoogle Scholar
  19. 19.
    Vo-Dinh T, Hiromoto M, Begun G, Moody R (1984) Surface-enhanced Raman spectrometry for trace organic analysis. Anal Chem 56(9):1667–1670. doi:10.1021/ac00273a029 CrossRefGoogle Scholar
  20. 20.
    Meier M, Wokaun A, Vo-Dinh T (1985) Silver particles on stochastic quartz substrates providing tenfold increase in Raman enhancement. J Phys Chem 89(10):1843–1846. doi:10.1021/j100256a002 CrossRefGoogle Scholar
  21. 21.
    Vo-Dinh T, Meier M, Wokaun A (1986) Surface-enhanced Raman-spectrometry with silver particles on stochastic-post substrates. Anal Chim Acta 181:139–148. doi:10.1016/S0003-2670(00)85228-9 CrossRefGoogle Scholar
  22. 22.
    Vo-Dinh T (1998) Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Anal Chem 17(8–9):557–582. doi:10.1016/s0165-9936(98)00069-7 CrossRefGoogle Scholar
  23. 23.
    Vo-Dinh T, Dhawan A, Norton SJ, Khoury CG, Wang H-N, Misra V, Gerhold MD (2010) Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing. J Phys Chem C 114(16):7480–7488. doi:10.1021/jp911355q CrossRefGoogle Scholar
  24. 24.
    Wang H-N, Vo-Dinh T (2009) Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 20(6):065101. doi:10.1088/0957-4484/20/6/065101 CrossRefGoogle Scholar
  25. 25.
    Wang H-N, Vo-Dinh T (2011) Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection. Small 7(21):3067–3074. doi:10.1002/smll.201101380 CrossRefGoogle Scholar
  26. 26.
    Gregas MK, Yan F, Scaffidi J, Wang H-N, Vo-Dinh T (2011) Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge. Nanomedicine 7(1):115–122. doi:10.1016/j.nano.2010.07.009 CrossRefGoogle Scholar
  27. 27.
    Wabuyele M, Yan F, Griffin G, Vo-Dinh T (2005) Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells. Rev Sci Instrum 76(6):063710. doi:10.1063/1.1938667 CrossRefGoogle Scholar
  28. 28.
    Fales AM, Yuan H, Vo-Dinh T (2011) Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir 27(19):12186–12190. doi:10.1021/la202602q CrossRefGoogle Scholar
  29. 29.
    Yuan H, Khoury CG, Wilson CM, Grant GA, Vo-Dinh T (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7):075102. doi:10.1088/0957-4484/23/7/075102 CrossRefGoogle Scholar
  30. 30.
    Yuan H, Fales AM, Khoury CG, Liu J, Vo-Dinh T (2013) Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44(2):234–239. doi:10.1002/jrs.4172 CrossRefGoogle Scholar
  31. 31.
    Yuan H, Liu Y, Fales AM, Li Y, Liu J, Vo-Dinh T (2013) Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. Anal Chem 85(1):208–212. doi:10.1021/ac302510g CrossRefGoogle Scholar
  32. 32.
    Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134(28):11358–11361. doi:10.1021/ja304180y CrossRefGoogle Scholar
  33. 33.
    Yuan H, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T (2012) In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine 8(8):1355–1363. doi:10.1016/j.nano.2012.02.005 CrossRefGoogle Scholar
  34. 34.
    Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48(5):872–897. doi:10.1002/anie.200802585 CrossRefGoogle Scholar
  35. 35.
    Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110. doi:10.3322/CA.2007.0003 CrossRefGoogle Scholar
  36. 36.
    Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288. doi:10.1146/annurev.bioeng.9.060906.152025 CrossRefGoogle Scholar
  37. 37.
    Kim BYS, Rutka JT, Chan WCW (2010) Nanomedicine. N Eng J Med 363(25):2434–2443. doi:10.1056/NEJMra0912273 CrossRefGoogle Scholar
  38. 38.
    Rodriguez-Lorenzo L, Alvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stephan O, Kociak M, Liz-Marzán LM, Garcia de Abajo FJ (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131(13):4616–4618. doi:10.1021/ja809418t CrossRefGoogle Scholar
  39. 39.
    Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtuluş Ö, Lee SH, Lindquist NC, Oh S-H, Haynes CL (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13(24):11551–11567. doi:10.1039/c0cp01841d CrossRefGoogle Scholar
  40. 40.
    Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM (2011) Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399(1):3–27. doi:10.1007/s00216-010-4207-5 CrossRefGoogle Scholar
  41. 41.
    Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44(10):914–924. doi:10.1021/ar200061q CrossRefGoogle Scholar
  42. 42.
    Huang L, Liu Y (2011) In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng 13(1):507–530. doi:10.1146/annurev-bioeng-071910-124709 CrossRefGoogle Scholar
  43. 43.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782. doi:10.1039/b806051g CrossRefGoogle Scholar
  44. 44.
    Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183. doi:10.1002/smll.201000134 CrossRefGoogle Scholar
  45. 45.
    Abalde-Cela S, Aldeanueva-Potel P, Mateo-Mateo C, Rodríguez-Lorenzo L, Alvarez-Puebla RA, Liz-Marzán LM (2010) Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface 7(Suppl 4):S435–S450. doi:10.1098/rsif.2010.0125.focus CrossRefGoogle Scholar
  46. 46.
    Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648. doi:10.1038/nphoton.2007.223 CrossRefGoogle Scholar
  47. 47.
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626. doi:10.1146/annurev.anchem.1.031207.112814 CrossRefGoogle Scholar
  48. 48.
    Zhang J (2010) Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J Phys Chem Lett 1(4):686–695. doi:10.1021/jz900366c CrossRefGoogle Scholar
  49. 49.
    Wang G, Stender AS, Sun W, Fang N (2010) Optical imaging of non-fluorescent nanoparticle probes in live cells. Analyst 135(2):215–221. doi:10.1039/b916395f CrossRefGoogle Scholar
  50. 50.
    Melancon MP, Zhou M, Li C (2011) Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res 44(10):947–956. doi:10.1021/ar200022e CrossRefGoogle Scholar
  51. 51.
    Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817. doi:10.1002/smll.200902216 CrossRefGoogle Scholar
  52. 52.
    Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ (2012) Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano 6(9):7681–7691. doi:10.1021/nn301135w CrossRefGoogle Scholar
  53. 53.
    Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825. doi:10.1002/adma.200902557 CrossRefGoogle Scholar
  54. 54.
    Rodriguez-Lorenzo L, Alvarez-Puebla RA, Javier Garcia de Abajo F, Liz-Marzán LM (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114(16):7336–7340. doi:10.1021/jp909253w CrossRefGoogle Scholar
  55. 55.
    Li B, Claytor KE, Yuan H, Vo-Dinh T, Warren WS, Fischer MC (2012) Multicontrast nonlinear optical microscopy with a compact and rapid pulse shaper. Opt Lett 37(13):2763–2765. doi:10.1364/OL.37.002763 CrossRefGoogle Scholar
  56. 56.
    Kim C, Song H-M, Cai X, Yao J, Wei A, Wang LV (2011) In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J Mater Chem 21(9):2841–2844. doi:10.1039/c0jm04194g CrossRefGoogle Scholar
  57. 57.
    Schütz M, Steinigeweg D, Salehi M, Kömpe K, Schlücker S (2011) Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun 47(14):4216–4218. doi:10.1039/c0cc05229a CrossRefGoogle Scholar
  58. 58.
    Xie J, Lee JY, Wang DIC (2007) Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem Mater 19(11):2823–2830. doi:10.1021/cm0700100 CrossRefGoogle Scholar
  59. 59.
    Willets KA (2009) Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics. Anal Bioanal Chem 394(1):85–94. doi:10.1007/s00216-009-2682-3 CrossRefGoogle Scholar
  60. 60.
    Drescher D, Kneipp J (2012) Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev 41(17):5780–5799. doi:10.1039/c2cs35127g CrossRefGoogle Scholar
  61. 61.
    Vitol EA, Orynbayeva Z, Friedman G, Gogotsi Y (2012) Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS). J Raman Spectrosc 43(7):817–827. doi:10.1002/jrs.3100 CrossRefGoogle Scholar
  62. 62.
    Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54. doi:10.1007/s00216-011-5631-x CrossRefGoogle Scholar
  63. 63.
    Xie H-n, Larmour IA, Smith WE, Faulds K, Graham D (2012) Surface-enhanced Raman scattering investigation of hollow gold nanospheres. J Phys Chem C 116(14):8338–8342. doi:10.1021/jp3014089 CrossRefGoogle Scholar
  64. 64.
    Harper MM, McKeating KS, Faulds K (2013) Recent developments and future directions in SERS for bioanalysis. Phys Chem Chem Phys 15(15):5312–5328. doi:10.1039/c2cp43859c CrossRefGoogle Scholar
  65. 65.
    Baker G, Moore D (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770. doi:10.1007/s00216-005-3353-7 CrossRefGoogle Scholar
  66. 66.
    Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37(5):885–897. doi:10.1039/b710915f CrossRefGoogle Scholar
  67. 67.
    Wolkow RA, Moskovits M (1987) Enhanced photochemistry on silver surfaces. J Chem Phys 87(10):5858–5869. doi:10.1063/1.453508 CrossRefGoogle Scholar
  68. 68.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250CrossRefGoogle Scholar
  69. 69.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter 14(18):R597–R624. doi:10.1088/0953-8984/14/18/202 CrossRefGoogle Scholar
  70. 70.
    Kneipp K, Wang Y, Kneipp H, Perelman L, Itzkan I, Dasari R, Feld M (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670. doi:10.1103/PhysRevLett.78.1667 CrossRefGoogle Scholar
  71. 71.
    Qian XM, Nie S (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920. doi:10.1039/b708839f CrossRefGoogle Scholar
  72. 72.
    Nie S, Emery S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106. doi:10.1126/science.275.5303.1102 CrossRefGoogle Scholar
  73. 73.
    Xu H, Aizpurua J, Kall M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62(3):4318–4324. doi:10.1103/PhysRevE.62.4318 CrossRefGoogle Scholar
  74. 74.
    Metiu H, Das P (1984) The electromagnetic theory of surface enhanced spectroscopy. Annu Rev Phys Chem 35:507–536. doi:10.1146/annurev.pc.35.100184.002451 CrossRefGoogle Scholar
  75. 75.
    Orendorff C, Gearheart L, Jana N, Murphy C (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8(1):165–170. doi:10.1039/b512573a CrossRefGoogle Scholar
  76. 76.
    Wustholz KL, Henry A-I, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, van Duyne RP (2010) Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc 132(31):10903–10910. doi:10.1021/ja104174m CrossRefGoogle Scholar
  77. 77.
    Li M, Cushing SK, Zhang J, Lankford J, Aguilar ZP, Ma D, Wu N (2012) Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 23:115501. doi:10.1088/0957-4484/23/11/115501 CrossRefGoogle Scholar
  78. 78.
    Cunningham D, Littleford RE, Smith WE, Lundahl PJ, Khan I, McComb DW, Graham D, Laforest N (2006) Practical control of SERRS enhancement. Faraday Discuss 132:135–145. doi:10.1039/b506241a CrossRefGoogle Scholar
  79. 79.
    McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc 65(8):825–837. doi:10.1366/11-06365 CrossRefGoogle Scholar
  80. 80.
    Meyer SA, Ru ECL, Etchegoin PG (2010) Quantifying resonant Raman cross sections with SERS. J Phys Chem A 114(17):5515–5519. doi:10.1021/jp100669q CrossRefGoogle Scholar
  81. 81.
    Gabudean AM, Focsan M, Astilean S (2012) Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). J Phys Chem C 116(22):12240–12249. doi:10.1021/jp211954m CrossRefGoogle Scholar
  82. 82.
    Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15(15):5301–5311. doi:10.1039/c2cp44030j CrossRefGoogle Scholar
  83. 83.
    Hofmann A, Schmiel P, Stein B, Graf C (2011) Controlled formation of gold nanoparticle dimers using multivalent thiol ligands. Langmuir 27(24):15165–15175. doi:10.1021/la2028498 CrossRefGoogle Scholar
  84. 84.
    Cheng L, Song J, Yin J, Duan H (2011) Self-assembled plasmonic dimers of amphiphilic gold nanocrystals. J Phys Chem Lett 2(17):2258–2262. doi:10.1021/jz201011b CrossRefGoogle Scholar
  85. 85.
    Braun GB, Lee SJ, Laurence T, Fera N, Fabris L, Bazan GC, Moskovits M, Reich NO (2009) Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and small-molecule infusion. J Phys Chem C 113(31):13622–13629. doi:10.1021/jp903399p CrossRefGoogle Scholar
  86. 86.
    Tyler TP, Henry A-I, Van Duyne RP, Hersam MC (2011) Improved monodispersity of plasmonic nanoantennas via centrifugal processing. J Phys Chem Lett 2(3):218–222. doi:10.1021/jz101690f CrossRefGoogle Scholar
  87. 87.
    Su X, Zhang J, Sun L, Koo T-W, Chan S, Sundararajan N, Yamakawa M, Berlin AA (2005) Composite organic–inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Lett 5(1):49–54. doi:10.1021/nl0484088 CrossRefGoogle Scholar
  88. 88.
    Jun B-H, Noh MS, Kim J, Kim G, Kang H, Kim M-S, Seo Y-T, Baek J, Kim J-H, Park J, Kim S, Kim Y-K, Hyeon T, Cho M-H, Jeong DH, Lee Y-S (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6(1):119–125. doi:10.1002/smll.200901459 CrossRefGoogle Scholar
  89. 89.
    Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3(4):1304–1315. doi:10.1039/c0nr00804d CrossRefGoogle Scholar
  90. 90.
    Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3(9):2776–2788. doi:10.1021/nn900664j CrossRefGoogle Scholar
  91. 91.
    Norton SJ, Vo-Dinh T (2008) Optical response of linear chains of metal nanospheres and nanospheroids. J Opt Soc Am A 25(11):2767–2775CrossRefGoogle Scholar
  92. 92.
    Kleinman SL, Sharma B, Blaber MG, Henry A-I, Valley N, Freeman RG, Natan MJ, Schatz GC, Van Duyne RP (2013) Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J Am Chem Soc 135(1):301–308. doi:10.1021/ja309300d CrossRefGoogle Scholar
  93. 93.
    Lee J-H, Nam J-M, Jeon K-S, Lim D-K, Kim H, Kwon S, Lee H, Suh YD (2012) Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. ACS Nano 6(11):9574–9584. doi:10.1021/nn3028216 CrossRefGoogle Scholar
  94. 94.
    Khoury C, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C 112(48):18849–18859. doi:10.1021/jp8054747 Google Scholar
  95. 95.
    Xie J, Zhang Q, Lee JY, Wang DIC (2008) The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2(12):2473–2480. doi:10.1021/nn800442q CrossRefGoogle Scholar
  96. 96.
    Lu W, Singh AK, Khan SA, Senapati D, Yu H, Ray PC (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 132(51):18103–18114. doi:10.1021/ja104924b CrossRefGoogle Scholar
  97. 97.
    Osinkina L, Lohmüller T, Jäckel F, Feldmann J (2013) Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy. J Phys Chem C. doi:10.1021/jp312149d Google Scholar
  98. 98.
    Salehi M, Steinigeweg D, Ströbel P, Marx A, Packeisen J, Schlücker S (2012) Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity. J Biophotonics. doi:10.1002/jbio.201200148 Google Scholar
  99. 99.
    Alvarez-Puebla RA (2012) Effects of the excitation wavelength on the SERS spectrum. J Phys Chem Lett 3(7):857–866. doi:10.1021/jz201625j CrossRefGoogle Scholar
  100. 100.
    Sivapalan ST, Devetter BM, Yang TK, van Dijk T, Schulmerich MV, Carney PS, Bhargava R, Murphy CJ (2013) Off-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: not what we thought. ACS Nano 7(3):2099–2105. doi:10.1021/nn305710k CrossRefGoogle Scholar
  101. 101.
    Wu LY, Ross BM, Hong S, Lee LP (2010) Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 6(4):503–507. doi:10.1002/smll.200901604 CrossRefGoogle Scholar
  102. 102.
    Kang H, Jeong S, Park Y, Yim J, Jun B-H, Kyeong S, Yang J-K, Kim G, Hong S, Lee LP (2013) Near-Infrared SERS Nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv Funct Mater. doi:10.1002/adfm.201203726 Google Scholar
  103. 103.
    Gandra N, Singamaneni S (2013) Bilayered Raman-intense gold nanostructures with hidden tags (BRIGHTs) for high-resolution bioimaging. Adv Mater 25(7):1022–1027. doi:10.1002/adma.201203415 CrossRefGoogle Scholar
  104. 104.
    Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X, Xu L, Qiu Y, Zhao K, Wei T, Li Y, Zhao Y, Chen C (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11(2):772–780. doi:10.1021/nl103992v CrossRefGoogle Scholar
  105. 105.
    Prigodich AE, Randeria PS, Briley WE, Kim NJ, Daniel WL, Giljohann DA, Mirkin CA (2012) Multiplexed nanoflares: mRNA detection in live cells. Anal Chem 84(4):2062–2066. doi:10.1021/ac202648w CrossRefGoogle Scholar
  106. 106.
    Krpetic Z, Saleemi S, Prior IA, Sée V, Qureshi R, Brust M (2011) Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles. ACS Nano 5(6):5195–5201. doi:10.1021/nn201369k CrossRefGoogle Scholar
  107. 107.
    Berry CC, de la Fuente JM, Mullin M, Chu SWL, Curtis ASG (2007) Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE Trans Nanobiosci 6(4):262–269. doi:10.1109/TNB.2007.908973 CrossRefGoogle Scholar
  108. 108.
    Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134(13):5722–5725. doi:10.1021/ja211035w CrossRefGoogle Scholar
  109. 109.
    Panté N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13(2):425–434. doi:10.1091/mbc.01-06-0308 CrossRefGoogle Scholar
  110. 110.
    Dam DHM, Lee JH, Sisco PN, Co DT, Zhang M, Wasielewski MR, Odom TW (2012) Direct observation of nanoparticle-cancer cell nucleus interactions. ACS Nano 6(4):3318–3326. doi:10.1021/nn300296p CrossRefGoogle Scholar
  111. 111.
    Sathuluri RR, Yoshikawa H, Shimizu E, Saito M, Tamiya E (2011) Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation. PLoS One 6(8):e22802. doi:10.1371/journal.pone.0022802.t001 CrossRefGoogle Scholar
  112. 112.
    Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079. doi:10.1016/j.addr.2010.07.009 CrossRefGoogle Scholar
  113. 113.
    Wang Y, Yan B, Chen L (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428. doi:10.1021/cr300120g CrossRefGoogle Scholar
  114. 114.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Novel optical nanosensors for probing and imaging live cells. Nanomedicine 6(2):214–226. doi:10.1016/j.nano.2009.07.009 CrossRefGoogle Scholar
  115. 115.
    Schlücker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. Chemphyschem 10(9–10):1344–1354. doi:10.1002/cphc.200900119 CrossRefGoogle Scholar
  116. 116.
    Liu R, Liu J-f, Zhou X-x, Jiang G-b (2011) Applications of Raman-based techniques to on-site and in-vivo analysis. Trends Anal Chem 30(9):1462–1476. doi:10.1016/j.trac.2011.06.011 CrossRefGoogle Scholar
  117. 117.
    Alvarez-Puebla RA, Liz-Marzán LM (2010) SERS-based diagnosis and biodetection. Small 6(5):604–610. doi:10.1002/smll.200901820 CrossRefGoogle Scholar
  118. 118.
    Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110(5):2709–2728. doi:10.1021/cr900249z CrossRefGoogle Scholar
  119. 119.
    Allgeyer ES, Pongan A, Browne M, Mason MD (2009) Optical signal comparison of single fluorescent molecules and Raman active gold nanostars. Nano Lett 9(11):3816–3819. doi:10.1021/nl902008g CrossRefGoogle Scholar
  120. 120.
    Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem 76(23):7064–7068. doi:10.1021/ac049093j CrossRefGoogle Scholar
  121. 121.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C 114(16):7421–7426. doi:10.1021/jp910034z CrossRefGoogle Scholar
  122. 122.
    Pallaoro A, Braun GB, Reich NO, Moskovits M (2010) Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. Small 6(5):618–622. doi:10.1002/smll.200901893 CrossRefGoogle Scholar
  123. 123.
    Wang F, Widejko RG, Yang Z, Nguyen KT, Chen H, Fernando LP, Christensen KA, Anker JN (2012) Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Anal Chem 84(18):8013–8019. doi:10.1021/ac3018179 CrossRefGoogle Scholar
  124. 124.
    Ochsenkuhn MA, Jess PR, Stoquert H, Dholakia K, Campbell CJ (2009) Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development. ACS Nano 3(11):3613–3621. doi:10.1021/nn900681c CrossRefGoogle Scholar
  125. 125.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7(9):2819–2823. doi:10.1021/nl071418z CrossRefGoogle Scholar
  126. 126.
    Bishnoi SW, Rozell CJ, Levin CS, Gheith MK, Johnson BR, Johnson DH, Halas NJ (2006) All-optical nanoscale pH meter. Nano Lett 6(8):1687–1692. doi:10.1021/nl060865w CrossRefGoogle Scholar
  127. 127.
    Canton I, Battaglia G (2012) Endocytosis at the nanoscale. Chem Soc Rev 41(7):2718–2739. doi:10.1039/c2cs15309b CrossRefGoogle Scholar
  128. 128.
    Iversen T-G, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6(2):176–185. doi:10.1016/j.nantod.2011.02.003 CrossRefGoogle Scholar
  129. 129.
    Chithrani DB (2010) Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol 27(7):299–311. doi:10.3109/09687688.2010.507787 CrossRefGoogle Scholar
  130. 130.
    Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195. doi:10.1016/j.jconrel.2010.01.036 CrossRefGoogle Scholar
  131. 131.
    Wang Z, Bonoiu A, Samoc M, Cui Y, Prasad PN (2008) Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. Biosens Bioelectron 23(6):886–891. doi:10.1016/j.bios.2007.09.017 CrossRefGoogle Scholar
  132. 132.
    Zong S, Wang Z, Yang J, Cui Y (2011) Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. Anal Chem 83(11):4178–4183. doi:10.1021/ac200467z CrossRefGoogle Scholar
  133. 133.
    Auchinvole CAR, Richardson P, McGuinnes C, Mallikarjun V, Donaldson K, McNab H, Campbell CJ (2012) Monitoring intracellular redox potential changes using SERS nanosensors. ACS Nano 6(1):888–896. doi:10.1021/nn204397q CrossRefGoogle Scholar
  134. 134.
    Scaffidi J, Gregas MK, Seewaldt V, Vo-Dinh T (2009) SERS-based plasmonic nanobiosensing in single living cells. Anal Bioanal Chem 393(4):1135–1141. doi:10.1007/s00216-008-2521-y CrossRefGoogle Scholar
  135. 135.
    Vo-Dinh T, Alarie JP, Cullum BM, Griffin GD (2000) Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nat Biotechnol 18(7):764–767. doi:10.1038/77337 CrossRefGoogle Scholar
  136. 136.
    Kasili PM, Song JM, Vo-Dinh T (2004) Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc 126(9):2799–2806. doi:10.1021/ja037388t CrossRefGoogle Scholar
  137. 137.
    Bálint S, Rao S, Marro M, Miškovský P, Petrov D (2011) Monitoring of local pH in photodynamic therapy–treated live cancer cells using surface-enhanced Raman scattering probes. J Raman Spectrosc 42(6):1215–1221. doi:10.1002/jrs.2856 CrossRefGoogle Scholar
  138. 138.
    Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, New YorkGoogle Scholar
  139. 139.
    Sha MY, Xu H, Natan MJ, Cromer R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130(51):17214–17215. doi:10.1021/ja804494m CrossRefGoogle Scholar
  140. 140.
    Wang Z, Zong S, Yang J, Li J, Cui Y (2011) Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 26(6):2883–2889. doi:10.1016/j.bios.2010.11.032 CrossRefGoogle Scholar
  141. 141.
    Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, Shin HJC, Nie S (2011) Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 71(5):1526–1532. doi:10.1158/0008-5472.CAN-10-3069 CrossRefGoogle Scholar
  142. 142.
    Nithipatikom K, McCoy MJ, Hawi SR, Nakamoto K, Adar F, Campbell WB (2003) Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells. Anal Biochem 322(2):198–207. doi:10.1016/j.ab.2003.07.020 CrossRefGoogle Scholar
  143. 143.
    Shachaf CM, Elchuri SV, Koh AL, Zhu J, Nguyen LN, Mitchell DJ, Zhang J, Swartz KB, Sun L, Chan S, Sinclair R, Nolan GP (2009) A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic–inorganic nanoparticles (COINs). PLoS One 4(4):e5206. doi:10.1371/journal.pone.0005206 CrossRefGoogle Scholar
  144. 144.
    Nolan JP, Duggan E, Liu E, Condello D, Dave I, Stoner SA (2012) Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods 57(3):272–279. doi:10.1016/j.ymeth.2012.03.024 CrossRefGoogle Scholar
  145. 145.
    Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang K, Oh CH (2007) Biological imaging of HEK293 cells expressing PLCgamma1 using surface-enhanced Raman microscopy. Anal Chem 79(3):916–922. doi:10.1021/ac061246a CrossRefGoogle Scholar
  146. 146.
    Park H, Lee S, Chen L, Lee EK, Shin SY, Lee YH, Son SW, Oh CH, Song JM, Kang SH, Choo J (2009) SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys 11(34):7444–7449. doi:10.1039/b904592a CrossRefGoogle Scholar
  147. 147.
    Pallaoro A, Braun GB, Moskovits M (2011) Quantitative ratiometric discrimination between noncancerous and cancerous prostate cells based on neuropilin-1 overexpression. Proc Natl Acad Sci USA 108(40):16559–16564. doi:10.1073/pnas.1109490108 CrossRefGoogle Scholar
  148. 148.
    Kennedy DC, Tay L-L, Lyn RK, Rouleau Y, Hulse J, Pezacki JP (2009) Nanoscale aggregation of cellular β2-adrenergic receptors measured by plasmonic interactions of functionalized nanoparticles. ACS Nano 3(8):2329–2339. doi:10.1021/nn900488u CrossRefGoogle Scholar
  149. 149.
    Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77(8):2381–2385. doi:10.1021/ac050109v CrossRefGoogle Scholar
  150. 150.
    Stokes RJ, McKenzie F, McFarlane E, Ricketts A, Tetley L, Faulds K, Alexander J, Graham D (2009) Rapid cell mapping using nanoparticles and SERRS. Analyst 134(1):170–175. doi:10.1039/b815117b CrossRefGoogle Scholar
  151. 151.
    Sirimuthu NMS, Syme CD, Cooper JM (2010) Monitoring the uptake and redistribution of metal nanoparticles during cell culture using surface-enhanced Raman scattering spectroscopy. Anal Chem 82(17):7369–7373. doi:10.1021/ac101480t CrossRefGoogle Scholar
  152. 152.
    Matschulat A, Drescher D, Kneipp J (2010) Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 4(6):3259–3269. doi:10.1021/nn100280z CrossRefGoogle Scholar
  153. 153.
    Rodriguez-Lorenzo L, Krpetic Z, Barbosa S, Alvarez-Puebla RA, Liz-Marzán LM, Prior IA, Brust M (2011) Intracellular mapping with SERS-encoded gold nanostars. Integr Biol 3(9):922–926. doi:10.1039/c1ib00029b CrossRefGoogle Scholar
  154. 154.
    Schlücker S, Schaeberle MD, Huffman SW, Levin IW (2003) Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal Chem 75(16):4312–4318. doi:10.1021/ac034169h CrossRefGoogle Scholar
  155. 155.
    Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA 106(32):13511–13516. doi:10.1073/pnas.0813327106 CrossRefGoogle Scholar
  156. 156.
    von Maltzahn G, Centrone A, Park J-H, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN (2009) SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 21(31):3175–3180. doi:10.1002/adma.200803464 CrossRefGoogle Scholar
  157. 157.
    Wang Y, Seebald JL, Szeto DP, Irudayaraj J (2010) Biocompatibility and biodistribution of surface-enhanced raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano 4(7):4039–4053. doi:10.1021/nn100351h CrossRefGoogle Scholar
  158. 158.
    Maiti KK, Dinish US, Samanta A, Vendrell M, Soh K-S, Park S-J, Olivo M, Chang Y-T (2012) Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7(2):85–93. doi:10.1016/j.nantod.2012.02.008 CrossRefGoogle Scholar
  159. 159.
    Matousek P, Stone N (2013) Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. J Biophotonics 6(1):7–19. doi:10.1002/jbio.201200141 CrossRefGoogle Scholar
  160. 160.
    Dulkeith E, Niedereichholz T, Klar T, Feldmann J, von Plessen G, Gittins D, Mayya K, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70(20):205424. doi:10.1103/PhysRevB.70.205424 CrossRefGoogle Scholar
  161. 161.
    Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366. doi:10.1146/annurev.physchem.54.011002.103759 CrossRefGoogle Scholar
  162. 162.
    Wu X, Ming T, Wang X, Wang P, Wang J, Chen J (2010) High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 4(1):113–120. doi:10.1021/nn901064m CrossRefGoogle Scholar
  163. 163.
    Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81(15):6285–6294. doi:10.1021/ac900308v CrossRefGoogle Scholar
  164. 164.
    Chen Y, Zhang Y, Liang W, Li X (2012) Gold nanocages as contrast agents for two-photon luminescence endomicroscopy imaging. Nanomedicine 8(8):1267–1270. doi:10.1016/j.nano.2012.07.003 CrossRefGoogle Scholar
  165. 165.
    Tong L, Wei Q, Wei A, Cheng J-X (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32. doi:10.1111/j.1751-1097.2008.00507.x CrossRefGoogle Scholar
  166. 166.
    Pollnau M, Gamelin D, Lüthi S, Güdel H, Hehlen M (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61(5):3337–3346. doi:10.1103/PhysRevB.61.3337 CrossRefGoogle Scholar
  167. 167.
    Au L, Zhang Q, Cobley CM, Gidding M, Schwartz AG, Chen J, Xia Y (2010) Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano 4(1):35–42. doi:10.1021/nn901392m CrossRefGoogle Scholar
  168. 168.
    Zhang Y, Yu J, Birch DJS, Chen Y (2010) Gold nanorods for fluorescence lifetime imaging in biology. J Biomed Opt 15(2):020504. doi:10.1117/1.3366646 CrossRefGoogle Scholar
  169. 169.
    Yuan H, Khoury CG, Fales A, Wilson C, Grant G, Vo-Dinh T (2012) Plasmonic gold nanostars: a potential agent for molecular imaging and cancer therapy. In: Biomedical optics and 3-D imaging. Optical Society of America, Washington, paper BM2A.8Google Scholar
  170. 170.
    Hutter E, Boridy S, Labrecque S, Lalancette-Hébert M, Kriz J, Winnik FM, Maysinger D (2010) Microglial response to gold nanoparticles. ACS Nano 4(5):2595–2606. doi:10.1021/nn901869f CrossRefGoogle Scholar
  171. 171.
    Cho EC, Zhang Y, Cai X, Moran CM, Wang LV, Xia Y (2013) Quantitative analysis of the fate of gold nanocages in vitro and in vivo after uptake by U87-MG tumor cells. Angew Chem Int Ed 52(4):1152–1155. doi:10.1002/anie.201208096 CrossRefGoogle Scholar
  172. 172.
    Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11(12):1385–1391CrossRefGoogle Scholar
  173. 173.
    Nagesha D, Laevsky GS, Lampton P, Banyal R, Warner C, DiMarzio C, Sridhar S (2007) In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles. Int J Nanomed 2(4):813–819Google Scholar
  174. 174.
    Huff TB, Hansen MN, Zhao Y, Cheng J-X, Wei A (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23(4):1596–1599. doi:10.1021/la062642r CrossRefGoogle Scholar
  175. 175.
    Wei Q, Song H-M, Leonov AP, Hale JA, Oh D, Ong QK, Ritchie K, Wei A (2009) Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores. J Am Chem Soc 131(28):9728–9734. doi:10.1021/ja901562j CrossRefGoogle Scholar
  176. 176.
    Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945. doi:10.1021/nl062962v CrossRefGoogle Scholar
  177. 177.
    Bickford L, Sun J, Fu K, Lewinski N (2008) Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnology 19:315102–315108. doi:10.1088/0957-4484/19/31/315102 CrossRefGoogle Scholar
  178. 178.
    Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng J-X (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102(44):15752–15756. doi:10.1073/pnas.0504892102 CrossRefGoogle Scholar
  179. 179.
    Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett 95(26):267405CrossRefGoogle Scholar
  180. 180.
    Gregas MK, Scaffidi J, Lauly B, Vo-Dinh T (2010) Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells. Appl Spectrosc 64(8):858–866. doi:10.1366/000370210792081037 CrossRefGoogle Scholar
  181. 181.
    Tan X, Wang Z, Yang J, Song C, Zhang R, Cui Y (2009) Polyvinylpyrrolidone- (PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells. Nanotechnology 20(44):445102. doi:10.1088/0957-4484/20/44/445102 CrossRefGoogle Scholar
  182. 182.
    Black KC, Kirkpatrick ND, Troutman TS, Xu L, Vagner J, Gillies RJ, Barton JK, Utzinger U, Romanowski M (2008) Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol Imaging 7(1):50–57Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hsiangkuo Yuan
    • 1
  • Janna K. Register
    • 1
  • Hsin-Neng Wang
    • 1
  • Andrew M. Fales
    • 1
  • Yang Liu
    • 2
  • Tuan Vo-Dinh
    • 1
  1. 1.Fitzpatrick Institute of Photonics, Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Fitzpatrick Institute of Photonics, Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations