Analytical and Bioanalytical Chemistry

, Volume 405, Issue 16, pp 5501–5517 | Cite as

Profiling and semiquantitative analysis of the cell surface proteome in human mesenchymal stem cells

  • Sang Kwang Lee
  • Jae Ho Kim
  • Sung-Soo Kim
  • Taewook Kang
  • Nam Hyun Park
  • Kyung-Hoon Kwon
  • Sang Sook Lee
  • Zee Won Lee
  • Hae young Suh-Kim
  • Kun Cho
  • Su Yeoung Yun
  • Ji Young Han
  • Jong Shin Yoo
  • Hyun Joo An
  • Young Mok Park
Original Paper

Abstract

Mulitpotent mesenchymal stem cells (MSCs) derived from human bone marrow are promising candidates for the development of cell therapeutic strategies. MSC surface protein profiles provide novel biological knowledge concerning the proliferation and differentiation of these cells, including the potential for identifying therapeutic targets. Basic fibroblast growth factor (bFGF) affects cell surface proteins, which are associated with increased growth rate, differentiation potential, as well as morphological changes of MSCs in vitro. Cell surface proteins were isolated using a biotinylation-mediated method and identified using a combination of one-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis and mass spectrometry. The resulting gel lines were cut into 20 bands and digested with trypsin. Each tryptic fragment was analyzed by liquid chromatography–electrospray ionization tandem mass spectrometry. Proteins were identified using the Mascot search program and the International Protein Index human database. Noble MSC surface proteins (n = 1,001) were identified from cells cultured either with (n = 857) or without (n = 667) bFGF-containing medium in three independent experiments. The proteins were classified using FatiGO to elucidate their function. We also confirmed the proteomics results using Western blotting and immunofluorescence microscopic analysis. The nature of the proteins identified makes it clear that MSCs express a wide variety of signaling molecules, including those related to cell differentiation. Among the latter proteins, four Ras-related Rab proteins, laminin-R, and three 14-3-3 proteins that were fractionated from MSCs cultured on bFGF-containing medium are implicated in bFGF-induced signal transduction of MSCs. Consequently, these finding provide insight into the understanding of the surface proteome of human MSCs.

Keywords

Basic fibroblast growth factor Mesenchymal stem cell Proteome Surface protein 

Supplementary material

216_2013_6969_MOESM1_ESM.pdf (725 kb)
ESM 1(PDF 724 kb)

References

  1. 1.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74CrossRefGoogle Scholar
  2. 2.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49CrossRefGoogle Scholar
  3. 3.
    Krause DS (2002) Plasticity of marrow-derived stem cells. Gene Ther 9:754–758CrossRefGoogle Scholar
  4. 4.
    Phinney DG, Kopen G, Isaacson RL, Prockop DJ (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72:570–585CrossRefGoogle Scholar
  5. 5.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefGoogle Scholar
  6. 6.
    Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779CrossRefGoogle Scholar
  7. 7.
    Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H, Schwarz J, Brenner R, Storch A (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117:4411–4422CrossRefGoogle Scholar
  8. 8.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370CrossRefGoogle Scholar
  9. 9.
    Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584CrossRefGoogle Scholar
  10. 10.
    Beyaert R, Fiers W (1994) Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett 340:9–16CrossRefGoogle Scholar
  11. 11.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822CrossRefGoogle Scholar
  12. 12.
    Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937CrossRefGoogle Scholar
  13. 13.
    Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313CrossRefGoogle Scholar
  14. 14.
    Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222CrossRefGoogle Scholar
  15. 15.
    Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386CrossRefGoogle Scholar
  16. 16.
    Amos TA, Gordon MY (1995) Sources of human hematopoietic stem cells for transplantation – a review. Cell Transplant 4:547–569Google Scholar
  17. 17.
    Mueller SM, Glowacki J (2001) Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82:583–590CrossRefGoogle Scholar
  18. 18.
    Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926CrossRefGoogle Scholar
  19. 19.
    Sun HJ, Bahk YY, Choi YR, Shim JH, Han SH, Lee JW (2006) A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res 24:2059–2071CrossRefGoogle Scholar
  20. 20.
    Akita S, Akino K, Tanaka K, Anraku K, Hirano A (2008) A basic fibroblast growth factor improves lower extremity wound healing with a porcine-derived skin substitute. J Trauma 64:809–815CrossRefGoogle Scholar
  21. 21.
    Douwes Dekker PB, Kuipers-Dijkshoorn NJ, Baelde HJ, van der Mey AG, Hogendoorn PC, Cornelisse CJ (2007) Basic fibroblast growth factor and fibroblastic growth factor receptor-1 may contribute to head and neck paraganglioma development by an autocrine or paracrine mechanism. Hum Pathol 38:79–85CrossRefGoogle Scholar
  22. 22.
    Kashiwakura I, Takahashi TA (2005) Fibroblast growth factor and ex vivo expansion of hematopoietic progenitor cells. Leuk Lymphoma 46:329–333CrossRefGoogle Scholar
  23. 23.
    Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2:reviews3005.3001–reviews3005.3012CrossRefGoogle Scholar
  24. 24.
    Naski MC, Ornitz DM (1998) FGF signaling in skeletal development. Front Biosci 3:d781–d794Google Scholar
  25. 25.
    Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149CrossRefGoogle Scholar
  26. 26.
    Akesson E, Piao JH, Samuelsson EB, Holmberg L, Kjaeldgaard A, Falci S, Sundstrom E, Seiger A (2007) Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord-derived neurospheres. Physiol Behav 92:60–66CrossRefGoogle Scholar
  27. 27.
    Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54–63CrossRefGoogle Scholar
  28. 28.
    Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69–80CrossRefGoogle Scholar
  29. 29.
    Tocci A, Forte L (2003) Mesenchymal stem cell: use and perspectives. Hematol J 4:92–96CrossRefGoogle Scholar
  30. 30.
    Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416CrossRefGoogle Scholar
  31. 31.
    Abdallah BM, Jensen CH, Gutierrez G, Leslie RG, Jensen TG, Kassem M (2004) Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. J Bone Miner Res 19:841–852CrossRefGoogle Scholar
  32. 32.
    Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430CrossRefGoogle Scholar
  33. 33.
    Paulsen IT, Sliwinski MK, Nelissen B, Goffeau A, Saier MH Jr (1998) Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett 430:116–125CrossRefGoogle Scholar
  34. 34.
    Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038CrossRefGoogle Scholar
  35. 35.
    Nunomura K, Nagano K, Itagaki C, Taoka M, Okamura N, Yamauchi Y, Sugano S, Takahashi N, Izumi T, Isobe T (2005) Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 4:1968–1976CrossRefGoogle Scholar
  36. 36.
    Chen WN, Yu LR, Strittmatter EF, Thrall BD, Camp DG 2nd, Smith RD (2003) Detection of in situ labeled cell surface proteins by mass spectrometry: application to the membrane subproteome of human mammary epithelial cells. Proteomics 3:1647–1651CrossRefGoogle Scholar
  37. 37.
    Sabarth N, Lamer S, Zimny-Arndt U, Jungblut PR, Meyer TF, Bumann D (2002) Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis. J Biol Chem 277:27896–27902CrossRefGoogle Scholar
  38. 38.
    Zhang W, Zhou G, Zhao Y, White MA (2003) Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis 24:2855–2863CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Zhang W, Kho Y (2004) Proteomic analysis of integral plasma membrane proteins. Anal Chem 76:1817–1823CrossRefGoogle Scholar
  40. 40.
    Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578–580CrossRefGoogle Scholar
  41. 41.
    Kim SS, Choi JM, Kim JW, Ham DS, Ghil SH, Kim MK, Kim-Kwon Y, Hong SY, Ahn SC, Kim SU et al (2005) cAMP induces neuronal differentiation of mesenchymal stem cells via activation of extracellular signal-regulated kinase/MAPK. Neuroreport 16:1357–1361CrossRefGoogle Scholar
  42. 42.
    Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR 3rd (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682CrossRefGoogle Scholar
  43. 43.
    Moore RE, Young MK, Lee TD (2002) Qscore: an algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectrom 13:378–386CrossRefGoogle Scholar
  44. 44.
    Wu SL, Choudhary G, Ramstrom M, Bergquist J, Hancock WS (2003) Evaluation of shotgun sequencing for proteomic analysis of human plasma using HPLC coupled with either ion trap or Fourier transform mass spectrometry. J Proteome Res 2:383–393CrossRefGoogle Scholar
  45. 45.
    Elschenbroich S, Kim Y, Medin JA, Kislinger T (2010) Isolation of cell surface proteins for mass spectrometry-based proteomics. Expert Rev Proteomics 7(1):141–154CrossRefGoogle Scholar
  46. 46.
    Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G, Medema JP (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70(2):719–729CrossRefGoogle Scholar
  47. 47.
    Mastroleo F, Leroy B, Van Houdt R, s’ Heeren C, Mergeay M, Hendrickx L, Wattiez R (2009) Shotgun proteome analysis of Rhodospirillum rubrum S1H: integrating data from gel-free and gel-based peptides fractionation methods. J Proteome Res 8(5):2530–2541CrossRefGoogle Scholar
  48. 48.
    Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272CrossRefGoogle Scholar
  49. 49.
    Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884CrossRefGoogle Scholar
  50. 50.
    Ohgushi H, Caplan AI (1999) Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 48:913–927CrossRefGoogle Scholar
  51. 51.
    Wang D, Park JS, Chu JS, Krakowski A, Luo K, Chen DJ, Li S (2004) Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem 279:43725–43734CrossRefGoogle Scholar
  52. 52.
    Lee SK, Kim Y, Kim SS, Lee JH, Cho K, Lee SS, Lee ZW, Kwon KH, Kim YH, Suh-Kim H et al (2009) Differential expression of cell surface proteins in human bone marrow mesenchymal stem cells cultured with or without basic fibroblast growth factor containing medium. Proteomics 9:4389–4405CrossRefGoogle Scholar
  53. 53.
    Jeong JA, Lee Y, Lee W, Jung S, Lee DS, Jeong N, Lee HS, Bae Y, Jeon CJ, Kim H (2006) Proteomic analysis of the hydrophobic fraction of mesenchymal stem cells derived from human umbilical cord blood. Mol Cells 22:36–43Google Scholar
  54. 54.
    Gautier V, Mouton-Barbosa E, Bouyssié D, Delcourt N, Beau M, Girard JP, Cayrol C, Burlet-Schiltz O, Monsarrat B, Gonzalez de Peredo A (2012) Label-free quantification and shotgun analysis of complex proteomes by one-dimensional SDS-PAGE/NanoLC-MS: evaluation for the large scale analysis of inflammatory human endothelial cells. Mol Cell Proteomics 11(8):527–539CrossRefGoogle Scholar
  55. 55.
    Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 97(17):9390–9395CrossRefGoogle Scholar
  56. 56.
    Reuss B, von Bohlen und Halbach O (2003) Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 313:139–157CrossRefGoogle Scholar
  57. 57.
    Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117CrossRefGoogle Scholar
  58. 58.
    Ferro-Novick S, Novick P (1993) The role of GTP-binding proteins in transport along the exocytic pathway. Annu Rev Cell Biol 9:575–599CrossRefGoogle Scholar
  59. 59.
    Novick P, Brennwald P (1993) Friends and family: the role of the Rab GTPases in vesicular traffic. Cell 75:597–601CrossRefGoogle Scholar
  60. 60.
    Pfeffer SR (1994) Rab GTPases: master regulators of membrane trafficking. Curr Opin Cell Biol 6:522–526CrossRefGoogle Scholar
  61. 61.
    Zerial M, Stenmark H (1993) Rab GTPases in vesicular transport. Curr Opin Cell Biol 5:613–620CrossRefGoogle Scholar
  62. 62.
    Sonnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149:901–914CrossRefGoogle Scholar
  63. 63.
    Bhattacharya M, Babwah AV, Ferguson SS (2004) Small GTP-binding protein-coupled receptors. Biochem Soc Trans 32:1040–1044CrossRefGoogle Scholar
  64. 64.
    Feng Y, Press B, Wandinger-Ness A (1995) Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol 131:1435–1452CrossRefGoogle Scholar
  65. 65.
    Garin J, Diez R, Kieffer S, Dermine JF, Duclos S, Gagnon E, Sadoul R, Rondeau C, Desjardins M (2001) The phagosome proteome: insight into phagosome functions. J Cell Biol 152:165–180CrossRefGoogle Scholar
  66. 66.
    Ang AL, Folsch H, Koivisto UM, Pypaert M, Mellman I (2003) The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J Cell Biol 163:339–350CrossRefGoogle Scholar
  67. 67.
    Chen W, Feng Y, Chen D, Wandinger-Ness A (1998) Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell 9:3241–3257Google Scholar
  68. 68.
    Li Y, Luo L, Schubert M, Wagner RR, Kang CY (1993) Viral liposomes released from insect cells infected with recombinant baculovirus expressing the matrix protein of vesicular stomatitis virus. J Virol 67:4415–4420Google Scholar
  69. 69.
    Zhang W, Yang H, Kong X, Mohapatra S, San Juan-Vergara H, Hellermann G, Behera S, Singam R, Lockey RF, Mohapatra SS (2005) Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat Med 11:56–62CrossRefGoogle Scholar
  70. 70.
    Ang AL, Taguchi T, Francis S, Folsch H, Murrells LJ, Pypaert M, Warren G, Mellman I (2004) Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 167:531–543CrossRefGoogle Scholar
  71. 71.
    Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97:165–174CrossRefGoogle Scholar
  72. 72.
    Harris E, Yoshida K, Cardelli J, Bush J (2001) Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in dictyostelium. J Cell Sci 114:3035–3045Google Scholar
  73. 73.
    Drubin DG, Nelson WJ (1996) Origins of cell polarity. Cell 84:335–344CrossRefGoogle Scholar
  74. 74.
    Peranen J, Auvinen P, Virta H, Wepf R, Simons K (1996) Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J Cell Biol 135:153–167CrossRefGoogle Scholar
  75. 75.
    Peranen J, Furuhjelm J (2001) Expression, purification, and properties of Rab8 function in actin cortical skeleton organization and polarized transport. Methods Enzymol 329:188–196CrossRefGoogle Scholar
  76. 76.
    Ren M, Zeng J, De Lemos-Chiarandini C, Rosenfeld M, Adesnik M, Sabatini DD (1996) In its active form, the GTP-binding protein rab8 interacts with a stress-activated protein kinase. Proc Natl Acad Sci U S A 93:5151–5155CrossRefGoogle Scholar
  77. 77.
    Morrison DK (2009) The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 19:16–23CrossRefGoogle Scholar
  78. 78.
    Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16:162–172CrossRefGoogle Scholar
  79. 79.
    Mackintosh C (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 381:329–342CrossRefGoogle Scholar
  80. 80.
    Yaffe MB, Elia AE (2001) Phosphoserine/threonine-binding domains. Curr Opin Cell Biol 13:131–138CrossRefGoogle Scholar
  81. 81.
    Furdui CM, Lew ED, Schlessinger J, Anderson KS (2006) Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell 21:711–717CrossRefGoogle Scholar
  82. 82.
    Hinsby AM, Olsen JV, Mann M (2004) Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate-4. J Biol Chem 279:46438–46447CrossRefGoogle Scholar
  83. 83.
    Lundin L, Ronnstrand L, Cross M, Hellberg C, Lindahl U, Claesson-Welsh L (2003) Differential tyrosine phosphorylation of fibroblast growth factor (FGF) receptor-1 and receptor proximal signal transduction in response to FGF-2 and heparin. Exp Cell Res 287:190–198CrossRefGoogle Scholar
  84. 84.
    Mohammadi M, Dikic I, Sorokin A, Burgess WH, Jaye M, Schlessinger J (1996) Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 16:977–989Google Scholar
  85. 85.
    Mohammadi M, Dionne CA, Li W, Li N, Spivak T, Honegger AM, Jaye M, Schlessinger J (1992) Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358:681–684CrossRefGoogle Scholar
  86. 86.
    Lonic A, Barry EF, Quach C, Kobe B, Saunders N, Guthridge MA (2008) Fibroblast growth factor receptor 2 phosphorylation on serine 779 couples to 14-3-3 and regulates cell survival and proliferation. Mol Cell Biol 28:3372–3385CrossRefGoogle Scholar
  87. 87.
    Fiegel HC, Kluth J, Lioznov MV, Holzhuter S, Fehse B, Zander AR, Kluth D (2003) Hepatic lineages isolated from developing rat liver show different ways of maturation. Biochem Biophys Res Commun 305:46–53CrossRefGoogle Scholar
  88. 88.
    Fiegel HC, Park JJ, Lioznov MV, Martin A, Jaeschke-Melli S, Kaufmann PM, Fehse B, Zander AR, Kluth D (2003) Characterization of cell types during rat liver development. Hepatology 37:148–154CrossRefGoogle Scholar
  89. 89.
    Petersen BE, Goff JP, Greenberger JS, Michalopoulos GK (1998) Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology 27:433–445CrossRefGoogle Scholar
  90. 90.
    Thorgeirsson SS (1996) Hepatic stem cells in liver regeneration. FASEB J 10:1249–1256Google Scholar
  91. 91.
    Javazon EH, Colter DC, Schwarz EJ, Prockop DJ (2001) Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells 19:219–225CrossRefGoogle Scholar
  92. 92.
    Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225CrossRefGoogle Scholar
  93. 93.
    Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136CrossRefGoogle Scholar
  94. 94.
    Galbiati F, Razani B, Lisanti MP (2001) Emerging themes in lipid rafts and caveolae. Cell 106:403–411CrossRefGoogle Scholar
  95. 95.
    Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem 273:5419–5422CrossRefGoogle Scholar
  96. 96.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefGoogle Scholar
  97. 97.
    Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19:7289–7304Google Scholar
  98. 98.
    Park WY, Park JS, Cho KA, Kim DI, Ko YG, Seo JS, Park SC (2000) Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem 275:20847–20852CrossRefGoogle Scholar
  99. 99.
    Volonte D, Zhang K, Lisanti MP, Galbiati F (2002) Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell 13:2502–2517CrossRefGoogle Scholar
  100. 100.
    Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC et al (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332CrossRefGoogle Scholar
  101. 101.
    Ekblom P, Lonai P, Talts JF (2003) Expression and biological role of laminin-1. Matrix Biol 22:35–47CrossRefGoogle Scholar
  102. 102.
    Kibbey MC, Grant DS, Kleinman HK (1992) Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J Natl Cancer Inst 84:1633–1638CrossRefGoogle Scholar
  103. 103.
    Kleinman HK, Weeks BS, Schnaper HW, Kibbey MC, Yamamura K, Grant DS (1993) The laminins: a family of basement membrane glycoproteins important in cell differentiation and tumor metastases. Vitam Horm 47:161–186CrossRefGoogle Scholar
  104. 104.
    Nurcombe V (1992) Laminin in neural development. Pharmacol Ther 56:247–264CrossRefGoogle Scholar
  105. 105.
    Li X, Chen Y, Scheele S, Arman E, Haffner-Krausz R, Ekblom P, Lonai P (2001) Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. J Cell Biol 153:811–822CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sang Kwang Lee
    • 1
    • 6
  • Jae Ho Kim
    • 1
  • Sung-Soo Kim
    • 2
  • Taewook Kang
    • 1
    • 3
  • Nam Hyun Park
    • 1
    • 3
  • Kyung-Hoon Kwon
    • 1
  • Sang Sook Lee
    • 4
    • 7
  • Zee Won Lee
    • 4
  • Hae young Suh-Kim
    • 2
  • Kun Cho
    • 1
  • Su Yeoung Yun
    • 1
    • 3
  • Ji Young Han
    • 1
  • Jong Shin Yoo
    • 1
    • 3
  • Hyun Joo An
    • 3
  • Young Mok Park
    • 1
    • 4
    • 5
  1. 1.Mass Spectrometry Research CenterKorea Basic Science InstituteOchangRepublic of Korea
  2. 2.Department of Anatomy, Ajou UniversitySchool of MedicineSuwonRepublic of Korea
  3. 3.Graduate Schools of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
  4. 4.Biotechnology Fusion Research TeamKorea Basic Science InstituteDaejeonRepublic of Korea
  5. 5.Mass Spectrometry Research CenterKorea Basic Science InstituteOchangRepublic of Korea
  6. 6.Eulji Medical and Biological Research Institute (EMBRI)DaejeonRepublic of Korea
  7. 7.Department of BiologyChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations