Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 20, pp 6425–6436 | Cite as

Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices

  • A. PoghossianEmail author
  • M. Weil
  • A. G. Cherstvy
  • M. J. Schöning
Research Paper

Abstract

The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte–insulator–semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance–voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed.

Figure

Label-free electrical monitoring of polyelectrolyte multilayer formation by means of a capacitive field-effect sensor consisting of Al-p-Si-SiO2 structure. The consecutive adsorption of oppositely charged polyelectrolyte layers leads to alternating shifts of the capacitance-voltage and constant-capacitance curves, whereas the direction of these shifts correlates with the charge sign of the terminating polyelectrolyte layer

Keywords

Field-effect Capacitive sensor Polyelectrolyte multilayer Electrical monitoring ConCap 

Notes

Acknowledgments

A.G. Cherstvy gratefully acknowledges the financial support by the Deutsche Forschungsgemeinschaft. The authors thank H.-P. Bochem for technical support.

References

  1. 1.
    Nap R, Gong P, Szleifer I (2006) J Polym Sci B 44:2638–2662CrossRefGoogle Scholar
  2. 2.
    Decher G, Eckle M, Schmitt J, Struth B (1998) Curr Opin Colloid Interface Sci 3:32–39CrossRefGoogle Scholar
  3. 3.
    Klitzing R (2006) Phys Chem Chem Phys 8:5012–5033CrossRefGoogle Scholar
  4. 4.
    Schönhoff M (2003) Curr Opin Colloid Interface Sci 8:86–95CrossRefGoogle Scholar
  5. 5.
    Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, Klitzing R, Steitz R (2007) Colloids Surf A 303:14–29CrossRefGoogle Scholar
  6. 6.
    Crespilho FN, Zucolotto V, Oliveira ON, Nart FC (2006) Int J Electrochem Sci 1:194–214Google Scholar
  7. 7.
    Siqueira JR, Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON, Schöning MJ (2009) J Phys Chem C 113:14765–14770CrossRefGoogle Scholar
  8. 8.
    Siqueira JR, Abouzar MH, Bäcker M, Zucolotto V, Poghossian A, Oliveira ON, Schöning MJ (2009) Phys Status Solidi A 206:462–467CrossRefGoogle Scholar
  9. 9.
    Liu Y, Cui T (2007) Sensors Actuators B 123:148–152CrossRefGoogle Scholar
  10. 10.
    Lee SW, Kim BS, Chen S, Shao-Horn Y, Hammond PT (2009) J ACS 131:671–679Google Scholar
  11. 11.
    Cai G, Lee W, Min SK, Koo G, Cho BW, Lee SH, Han SH (2009) J Nanosci Nanotechnol 9:7209–7214CrossRefGoogle Scholar
  12. 12.
    Boudou T, Crouzier T, Ren K, Blin G, Picart C (2010) Adv Mater 22:441–467CrossRefGoogle Scholar
  13. 13.
    De Geest BG, De Koker S, Sukhorukov GB, Kreft O, Parak WJ, Skirtach AG, Demeester J, De Smedt SC, Hennink WE (2009) Soft Matter 5:282–291CrossRefGoogle Scholar
  14. 14.
    Mansouri S, Winnik FM, Tabrizian M (2009) Expert Opin Drug Discovery 6:585–597CrossRefGoogle Scholar
  15. 15.
    Noh J, Park S, Boo H, Kim HC, Chung TD (2011) Lab Chip 11:664–671CrossRefGoogle Scholar
  16. 16.
    Liu J, Herlogsson L, Sawatdee A, Favia P, Sandberg M, Crispin X, Engquist I, Berggren M (2010) Appl Phys Lett 97:103303CrossRefGoogle Scholar
  17. 17.
    Iost RM, Crespilho FN (2012) Biosens Bioelectron 31:1–10CrossRefGoogle Scholar
  18. 18.
    Abouzar MH, Poghossian A, Siqueira JR, Oliveira ON, Moritz W, Schöning MJ (2010) Phys Status Solidi A 207:884–890CrossRefGoogle Scholar
  19. 19.
    Park BW, Yoon DY, Kim DS (2010) Biosens Bioelectron 26:1–10CrossRefGoogle Scholar
  20. 20.
    Wu Z, Guan L, Shen G, Yu R (2002) Analyst 127:391–395CrossRefGoogle Scholar
  21. 21.
    Dukhin SS, Zimmermann R, Werner C (2008) J Colloid Interface Sci 328:217–226CrossRefGoogle Scholar
  22. 22.
    Glinel K, Dejugnat C, Prevot M, Schöler B, Schönhoff M, Klitzing R (2007) Colloids Surf A 303:3–13CrossRefGoogle Scholar
  23. 23.
    Mauser T, Dejugnat C, Sukhorukov GB (2004) Macromol Rapid Commun 25:1781–1785CrossRefGoogle Scholar
  24. 24.
    Bieker P, Schönhoff M (2010) Macromolecules 43:5052–5059CrossRefGoogle Scholar
  25. 25.
    Dutta AK, Belfort G (2009) Sensors Actuators B 136:60–65CrossRefGoogle Scholar
  26. 26.
    Wong JE, Zastrow H, Jaeger W, Klitzing R (2009) Langmuir 25:14061–14070CrossRefGoogle Scholar
  27. 27.
    Poghossian A, Abouzar MH, Sakkari M, Kassab T, Han Y, Ingebrandt S, Offenhäusser A, Schöning MJ (2006) Sensors Actuators B 11:163–170CrossRefGoogle Scholar
  28. 28.
    Neff PA, Wunderlich BK, Klitzing R, Bausch AR (2007) Langmuir 23:4048–4052CrossRefGoogle Scholar
  29. 29.
    Neff PA, Naji A, Ecker C, Nickel B, Klitzing R, Bausch AR (2006) Macromolecules 39:463–466CrossRefGoogle Scholar
  30. 30.
    Vu XT, Eschermann JF, Stockmann R, GhoshMoulick R, Offenhäusser A, Ingebrandt S (2009) Phys Status Solidi A 206:426–434CrossRefGoogle Scholar
  31. 31.
    Vu XT, Stockmann R, Wolfrum B, Offenhäusser A, Ingebrandt S (2010) Phys Status Solidi A 207:850–857CrossRefGoogle Scholar
  32. 32.
    Artyukhin AB, Stadermann M, Friddle RW, Stroeve P, Bakajin O, Noy A (2006) Nano Lett 6:2080–2085CrossRefGoogle Scholar
  33. 33.
    Gorin DA, Yashchenok AM, Manturov AO, Kolesnikova TA, Möhwald H (2009) Langmuir 25:12529–12534CrossRefGoogle Scholar
  34. 34.
    Schöning MJ, Näther N, Auger V, Poghossian A, Koudelka-Hep M (2005) Sensors Actuators B 108:986–992CrossRefGoogle Scholar
  35. 35.
    Mourzina Y, Mai T, Poghossian A, Ermelenko Y, Yoshinobu T, Vlasov Y, Iwasaki H, Schöning MJ (2003) Electrochim Acta 48:3333–3339CrossRefGoogle Scholar
  36. 36.
    Poghossian A, Mai DT, Mourzina Y, Schöning MJ (2004) Sensors Actuators B 103:423–428CrossRefGoogle Scholar
  37. 37.
    Beyer M, Menzel C, Quack R, Scheper T, Schugerl K, Treichel W, Voigt H, Ullrich M, Ferretti R (1994) Biosens Bioelectron 9:17–21CrossRefGoogle Scholar
  38. 38.
    Yoshinobu T, Ecken H, Poghossian A, Simonis A, Iwasaki H, Lüth H, Schöning MJ (2001) Electroanalysis 13:733–736CrossRefGoogle Scholar
  39. 39.
    Gun J, Schöning MJ, Abouzar MH, Poghossian A, Katz E (2008) Electroanalysis 20:1748–1753CrossRefGoogle Scholar
  40. 40.
    Abouzar MH, Poghossian A, Cherstvy AG, Pedraza AM, Ingebrandt S, Schöning MJ (2012) Phys Status Solidi A 209:925–934CrossRefGoogle Scholar
  41. 41.
    Gun J, Gutkin V, Lev O, Boyen HG, Wagner P, D’Olieslaeger M, Abouzar MH, Poghossian A, Schöning MJ (2011) J Phys Chem C 115:4439–4445CrossRefGoogle Scholar
  42. 42.
    Poghossian A, Malzahn K, Abouzar MH, Mehndiratta P, Katz E, Schöning MJ (2011) Electrochim Acta 56:9661–9665CrossRefGoogle Scholar
  43. 43.
    Garyfallou GZ, de Smet LCPM, Sudhölter EJR (2012) Sensors Actuators B 168:207–213CrossRefGoogle Scholar
  44. 44.
    Peng C, Thio YS, Gerhardt RA (2012) Langmuir 28:84–91CrossRefGoogle Scholar
  45. 45.
    Bosio V, Dubreuil F, Bogdanovic G, Fery A (2004) Colloids Surf A 243:147–155CrossRefGoogle Scholar
  46. 46.
    Smith RN, McCormick M, Barrett CJ, Reven L, Spiess HW (2004) Macromolecules 37:4830–4838CrossRefGoogle Scholar
  47. 47.
    Poghossian A (1997) Sensors Actuators B 44:551–553CrossRefGoogle Scholar
  48. 48.
    Yoo D, Shiratori S, Rubner M (1998) Macromolecules 31:4309–4318CrossRefGoogle Scholar
  49. 49.
    Adamczyk Z, Zembala M, Kolasinska M, Warszynski P (2007) Colloids Surf A 302:455–460CrossRefGoogle Scholar
  50. 50.
    Israelachvili J (1992) Intermolecular and surface forces. Academic, LondonGoogle Scholar
  51. 51.
    Durstock MF, Rubner M (2001) Langmuir 17:7865–7872CrossRefGoogle Scholar
  52. 52.
    Poghossian A, Cherstvy A, Ingebrandt S, Offenhäusser A, Schöning MJ (2005) Sensors Actuators B 111–112:470–480CrossRefGoogle Scholar
  53. 53.
    Kuga S, Yang JH, Takahashi H, Hirama K, Iwasaki T, Kawarada H (2008) JACS 130:13251–13263CrossRefGoogle Scholar
  54. 54.
    Butt HJ, Graf K, Kappl M (2003) Physics and chemistry of interfaces. Wiley, WeinheimCrossRefGoogle Scholar
  55. 55.
    Cherstvy AG (2011) Phys Chem Chem Phys 13:9942–9968CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Poghossian
    • 1
    • 3
    Email author
  • M. Weil
    • 1
    • 2
  • A. G. Cherstvy
    • 4
    • 5
  • M. J. Schöning
    • 1
    • 3
  1. 1.Institute of Nano- and Biotechnologies (INB)Aachen University of Applied Sciences, Campus JülichJülichGermany
  2. 2.Department of Informatics and Microsystem TechnologyUniversity of Applied Sciences Kaiserslautern, Campus ZweibrückenKaiserslauternGermany
  3. 3.Peter Grünberg Institute (PGI-8), Research Centre Jülich GmbHJülichGermany
  4. 4.Max-Planck Institute for the Physics of Complex SystemsDresdenGermany
  5. 5.Institute for Physics and AstronomyUniversity of PotsdamPotsdamGermany

Personalised recommendations