Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 25, pp 8027–8038 | Cite as

Direct high-performance liquid chromatographic enantioseparation of free α-, β- and γ-aminophosphonic acids employing cinchona-based chiral zwitterionic ion exchangers

  • Andrea F. G. Gargano
  • Michal Kohout
  • Pavla Macíková
  • Michael LämmerhoferEmail author
  • Wolfgang LindnerEmail author
Research Paper
Part of the following topical collections:
  1. Amino Acid Analysis

Abstract

We report a chiral high-performance liquid chromatographic enantioseparation method for free α-aminophosphonic, β-aminophosphonic, and γ-aminophosphonic acids, aminohydroxyphosphonic acids, and aromatic aminophosphinic acids with different substitution patterns. Enantioseparation of these synthons was achieved by means of high-performance liquid chromatography on CHIRALPAK ZWIX(+) and ZWIX(-) (cinchona-based chiral zwitterionic ion exchangers) under polar organic chromatographic elution conditions. Mobile phase characteristics such as acid-to-base ratio, type of counterion, and solvent composition were systematically varied in order to investigate their effect on the separation performance and to achieve optimal separation conditions for the set of analytes. Under the optimized conditions, 32 of 37 racemic aminophosphonic acids studied reached baseline separation when we employed a single generic mass-spectrometry-compatible mobile phase, with reversal of the elution order when we used (+) and (-) versions of the chiral stationary phase.

Figure

New zwitterionic ion-exchangers can separate free amino phosphonic acids and a change from Chiralpak ZWIX(+) to ZWIX(-) allows reversal of enantiomer elution order

Keywords

High-performance liquid chromatography Cinchona-based chiral zwitterionic ion exchanger Enantiomer separation Chiral stationary phases Aminophosphonic acids Aminophosphinic acids 

Notes

Acknowledgment

This work was financially supported by the University of Vienna through the interdisciplinary doctoral program Initiativkolleg Functional Molecules (IK I041−N). We thank Jan Pícha (Institute of Organic Chemistry and Biochemistry, AS CR) and Friedrich Hammerschmidt (Institute of Organic Chemistry, University of Vienna) for providing several samples of APAs. We are further grateful to the Operational Program Research and Development for Innovations - European Regional Development Fund (project CZ.1.05/2.1.00/03.0058) and the project of Palacký University in Olomouc PRF_2012_020 for financial support.

References

  1. 1.
    Hudson HR, Kukhar VP (2000) Aminophosphonic and aminophosphinic acids: chemistry and biological activity. Wiley, New YorkGoogle Scholar
  2. 2.
    Mucha A, Kafarski P, Berlicki L (2011) Remarkable potential of the alpha-aminophosphonate/phosphinate structural motif in medicinal chemistry. J Med Chem 54(17):5955–5980. doi: 10.1021/jm200587f CrossRefGoogle Scholar
  3. 3.
    Morphy JR, Beeley NRA, Boyce BA, Leonard J, Mason B, Millican A, Millar K, Oconnell JP, Porter J (1994) Potent and selective inhibitors of gelatinase-A. 2. Carboxylic and phosphonic acid-derivatives. Bioorg Med Chem Lett 4(23):2747–2752. doi: 10.1016/S0960-894x(01)80588-6 CrossRefGoogle Scholar
  4. 4.
    Kraicheva I, Bogomilova A, Tsacheva I, Momekov G, Troev K (2009) Synthesis, NMR characterization and in vitro antitumor evaluation of new aminophosphonic acid diesters. Eur J Med Chem 44(8):3363–3367. doi: 10.1016/j.ejmech.2009.03.017 CrossRefGoogle Scholar
  5. 5.
    Kafarski P, Lejczak B (1991) Biological activity of aminophosphonic acids. Phosphorus Sulfur 63(1–2):193–215. doi: 10.1080/10426509108029443 CrossRefGoogle Scholar
  6. 6.
    Grzywa R, Oleksyszyn J, Salvesen GS, Drag M (2010) Identification of very potent inhibitor of human aminopeptidase N (CD13). Bioorg Med Chem Lett 20(8):2497–2499. doi: 10.1016/j.bmcl.2010.02.111 CrossRefGoogle Scholar
  7. 7.
    Selvam C, Goudet C, Oueslati N, Pin JP, Acher FC (2007) L-(+)-2-Amino-4-thiophosphonobutyric acid (L-thioAP4), a new potent agonist of group III metabotropic glutamate receptors: increased distal acidity affords enhanced potency. J Med Chem 50(19):4656–4664. doi: 10.1021/jm070400y CrossRefGoogle Scholar
  8. 8.
    Wallace EM, Moliterni JA, Moskal MA, Neubert AD, Marcopulos N, Stamford LB, Trapani AJ, Savage P, Chou M, Jeng AY (1998) Design and synthesis of potent, selective inhibitors of endothelin-converting enzyme. J Med Chem 41(9):1513–1523. doi: 10.1021/jm970787c CrossRefGoogle Scholar
  9. 9.
    Beck J, Gharbi S, Herteg-Fernea A, Vercheval L, Bebrone C, Lassaux P, Zervosen A, Marchand-Brynaert J (2009) Aminophosphonic acids and aminobis(phosphonic acids) as potential inhibitors of penicillin-binding proteins. Eur J Org Chem 2009(1):85–97. doi: 10.1002/ejoc.200800812 CrossRefGoogle Scholar
  10. 10.
    Yang S, Gao X-W, Diao C-L, Song B-A, Jin L-H, Xu G-F, Zhang G-P, Wang W, Hu D-Y, Xue W, Zhou X, Lu P (2006) Synthesis and antifungal activity of novel chiral α-aminophosphonates containing fluorine moiety. Chin J Chem 24(11):1581–1588. doi: 10.1002/cjoc.200690296 CrossRefGoogle Scholar
  11. 11.
    Manning HC, Goebel T, Marx JN, Bornhop DJ (2002) Facile, efficient conjugation of a trifunctional lanthanide chelate to a peripheral benzodiazepine receptor ligand. Org Lett 4(7):1075–1078. doi: 10.1021/ol017155b CrossRefGoogle Scholar
  12. 12.
    Hammerschmidt F, Hanbauer M (2000) Transformation of arylmethylamines into alpha-aminophosphonic acids via metalated phosphoramidates: rearrangement of partly configurationally stable N-phosphorylated alpha-aminocarbanions. J Org Chem 65(19):6121–6131. doi: 10.1021/jo000585f CrossRefGoogle Scholar
  13. 13.
    Hammerschmidt F, Li Y-F (1994) Determination of absolute configuration of α-hydroxyphosphonates by 31P NMR spectroscopy of corresponding Mosher esters. Tetrahedron 50:10253–10264. doi: 10.1016/s0040-4020(01)81758-0 CrossRefGoogle Scholar
  14. 14.
    Hammerschmidt F, Wuggenig F (1999) Enzymes in organic chemistry. Part 9: chemo-enzymatic synthesis of phosphonic acid analogues of L-valine, L-leucine, L-isoleucine, L-methionine and L-α-aminobutyric acid of high enantiomeric excess. Tetrahedron-Asymmetry 10:1709–1721. doi: 10.1016/s0957-4166(99)00152-4 CrossRefGoogle Scholar
  15. 15.
    Schmidt U, Krause HW, Oehme G, Michalik M, Fischer C (1998) Enantioselective synthesis of α-aminophosphonic acid derivatives by hydrogenation. Chirality 10:564–572. doi: 10.1002/(sici)1520-636x(1998)10:7<564::aid-chir3>3.0.co;2-2 CrossRefGoogle Scholar
  16. 16.
    Woschek A, Lindner W, Hammerschmidt F (2003) Enzymes in organic chemistry, 11:[1] hydrolase-catalyzed resolution of α- and β-hydroxyphosphonates and synthesis of chiral, non-racemic β-aminophosphonic acids. Adv Synth Catal 345(12):1287–1298. doi: 10.1002/adsc.200303135 CrossRefGoogle Scholar
  17. 17.
    Wuggenig F, Schweifer A, Mereiter K, Hammerschmidt F (2011) Chemoenzymatic synthesis of phosphonic acid analogues of L-lysine, L-proline, L-ornithine, and L-pipecolic acid of 99 % ee – assignment of absolute configuration to (–)-proline. Eur J Org Chem 2011(10):1870–1879. doi: 10.1002/ejoc.201001501 CrossRefGoogle Scholar
  18. 18.
    Hammerschmidt F, Voellenkle H (1989) Absolute configuration of (2-amino-1-hydroxyethyl) phosphonic acid from Acanthamoeba castellanii (Neff). Preparation of phosphonic acid analogs of (+)- and (-)-serine. Liebigs Ann Chem 1989(6):577–583. doi: 10.1002/jlac.1989198901101
  19. 19.
    Fischer C, Schmidt U, Dwars T, Oehme G (1999) Enantiomeric resolution of derivatives of α-aminophosphonic and α-aminophosphinic acids by high-performance liquid chromatography and capillary electrophoresis. J Chromatogr A 845(1–2):273–283. doi: 10.1016/s0021-9673(99)00487-2 Google Scholar
  20. 20.
    Pirkle WH, Burke JA (1992) Separation of the enantiomers of the 3,5-dinitrobenzamide derivatives of α-amino phosphonates on four chiral stationary phases. J Chromatogr A 598(2):159–167. doi: 10.1016/0021-9673(92)85044-T CrossRefGoogle Scholar
  21. 21.
    Pirkle WH, Jonathan Brice L, Caccamese S, Principato G, Failla S (1996) Facile separation of the enantiomers of diethyl N-(aryl)-1-amino-1-arylmethanephosphonates on a rationally designed chiral stationary phase. J Chromatogr A 721(2):241–246. doi: 10.1016/0021-9673(95)00844-6 CrossRefGoogle Scholar
  22. 22.
    Pirkle WH, Jonathan Brice L, Widlanski TS, Roestamadji J (1996) Resolution and determination of the enantiomeric purity and absolute configurations of α-aryl-α-hydroxymethanephosphonates. Tetrahedron-Asymmetry 7(8):2173–2176. doi: 10.1016/0957-4166(96)00263-7 CrossRefGoogle Scholar
  23. 23.
    Zarbl E, Lammerhofer M, Hammerschmidt F, Wuggenig F, Hanbauer M, Maier NM, Sajovic L, Lindner W (2000) Direct liquid chromatographic enantioseparation of chiral alpha- and beta-aminophosphonic acids employing quinine-derived chiral anion exchangers: determination of enantiomeric excess and verification of absolute configuration. Anal Chim Acta 404(2):169–177. doi: 10.1016/s0003-2670(99)00700-x CrossRefGoogle Scholar
  24. 24.
    Lämmerhofer M, Hebenstreit D, Gavioli E, Lindner W, Mucha A, Kafarski P, Wieczorek P (2003) High-performance liquid chromatographic enantiomer separation and determination of absolute configurations of phosphinic acid analogues of dipeptides and their α-aminophosphinic acid precursors. Tetrahedron-Asymmetry 14(17):2557–2565. doi: 10.1016/s0957-4166(03)00537-8 CrossRefGoogle Scholar
  25. 25.
    Hoffmann CV, Reischl R, Maier NM, Lämmerhofer M, Lindner W (2009) Stationary phase-related investigations of quinine-based zwitterionic chiral stationary phases operated in anion-, cation-, and zwitterion-exchange modes. J Chromatogr A 1216(7):1147–1156. doi: 10.1016/j.chroma.2008.12.045 CrossRefGoogle Scholar
  26. 26.
    Hoffmann CV, Pell R, Lämmerhofer M, Lindner W (2008) Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC. Anal Chem 80(22):8780–8789. doi: 10.1021/ac801384f CrossRefGoogle Scholar
  27. 27.
    Hoffmann CV, Reischl R, Maier NM, Lämmerhofer M, Lindner W (2009) Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases. J Chromatogr A 1216(7):1157–1166. doi: 10.1016/j.chroma.2008.12.044 CrossRefGoogle Scholar
  28. 28.
    Pell R, Sić S, Lindner W (2012) Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases. J Chromatogr A. doi: 10.1016/j.chroma.2012.08.006 Google Scholar
  29. 29.
    Wernisch S, Lindner W (2012) Versatility of cinchona-based zwitterionic chiral stationary phases: enantiomer and diastereomer separations of non-protected oligopeptides utilizing a multi-modal chiral recognition mechanism. J Chromatogr A 1269:297–307. doi: 10.1016/j.chroma.2012.06.094 CrossRefGoogle Scholar
  30. 30.
    Hoffmann CV, Reischl R, Maier NM, Lammerhofer M, Lindner W (2009) Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases. J Chromatogr A 1216(7):1157–1166. doi: 10.1016/j.chroma.2008.12.044 CrossRefGoogle Scholar
  31. 31.
    Hoffmann CV, Reischl R, Maier NM, Lammerhofer M, Lindner W (2009) Stationary phase-related investigations of quinine-based zwitterionic chiral stationary phases operated in anion-, cation-, and zwitterion-exchange modes. J Chromatogr A 1216(7):1147–1156. doi: 10.1016/j.chroma.2008.12.045 CrossRefGoogle Scholar
  32. 32.
    Pell R, Sic S, Lindner W (2012) Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases. J Chromatogr A 1269:287–296. doi: 10.1016/j.chroma.2012.08.006 CrossRefGoogle Scholar
  33. 33.
    Pell R, Sić S, Lindner W (2012) Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases. J Chromatogr A 1269:287–296. doi: 10.1016/j.chroma.2012.08.006 CrossRefGoogle Scholar
  34. 34.
    Wernisch S, Pell R, Lindner W (2012) Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases. J Sep Sci 35(13):1560–1572. doi: 10.1002/jssc.201200103 CrossRefGoogle Scholar
  35. 35.
    Lämmerhofer M, Lindner W (1996) Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A 741(1):33–48. doi: 10.1016/0021-9673(96)00137-9 CrossRefGoogle Scholar
  36. 36.
    Maier NM, Schefzick S, Lombardo GM, Feliz M, Rissanen K, Lindner W, Lipkowitz KB (2002) Elucidation of the chiral recognition mechanism of cinchona alkaloid carbamate-type receptors for 3,5-dinitrobenzoyl amino Acids. J Am Chem Soc 124(29):8611–8629. doi: 10.1021/ja020203i CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrea F. G. Gargano
    • 1
  • Michal Kohout
    • 1
    • 2
  • Pavla Macíková
    • 1
    • 3
  • Michael Lämmerhofer
    • 4
    Email author
  • Wolfgang Lindner
    • 1
    Email author
  1. 1.Department of Analytical ChemistryUniversity of ViennaViennaAustria
  2. 2.Department of Organic ChemistryInstitute of Chemical TechnologyPragueCzech Republic
  3. 3.Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  4. 4.Institute of Pharmaceutical SciencesUniversity of TübingenTübingenGermany

Personalised recommendations