Analytical and Bioanalytical Chemistry

, Volume 405, Issue 20, pp 6417–6424 | Cite as

A systematic capillary electrophoresis study on the effect of the buffer composition on the reactivity of the anticancer drug cisplatin to the DNA model 2′-deoxyguanosine 5′-monophosphate (dGMP)

  • Gerlinde Grabmann
  • Bernhard K. Keppler
  • Christian G. Hartinger
Research Paper


The development of DNA-targeted next-generation platinum-based anticancer chemotherapeutics is often accompanied by studies on the reactivity to DNA models. However, the incubation conditions used in literature vary widely, and some of the buffer/salts used are known to form complexes with Pt. Such coordination can influence the binding process and also the adducts formed. In a systematic approach, studies on the binding of cisplatin (1 mM) to dGMP (2 mM) in a series of different incubation solutions of relevance to biological systems are reported, employing capillary zone electrophoresis (CZE) with UV/vis and electrospray ionization–mass spectrometric (ESI-MS) detectors. Kinetic experiments performed with CZE–UV showed a high reactivity of dGMP to cisplatin in pure water (τ 1/2 = 4.1 ± 0.7 h) but a significantly slowed down in a solution containing a carbonate/phosphate buffer supplemented with NaCl, resulting in a half-life of dGMP of 25 ± 3 h. Especially carbonate had a major impact on the binding, though no coordination to the metal center was detectable with the methods used. The only adducts containing buffer components were (phosphate)Pt and tris(ammine)Pt species, as identified by means of CZE–ESI-MS, in addition to the main adduct [Pt(NH3)2(dGMP)2 − 4H+]2− and other less abundant Pt-containing species.


Buffer composition Capillary electrophoresis Cisplatin DNA binding Nucleotides Mass spectrometry 



We would like to thank the University of Vienna for a PhD scholarship for G.G. within the doctoral program BioProMoTION (Bioactivity Profiling and Metabolism) and COST CM1105 and the Austrian Science Fund (FWF, project number I496-B11) for financial support. Verena Pichler is acknowledged for preparing cisplatin, and G.G would like to thank Samuel M. Meier and Alexander E. Egger for fruitful discussions.


  1. 1.
    Rosenberg B, Van Camp L, Krigas T (1965) Nature 205:698–699CrossRefGoogle Scholar
  2. 2.
    Galanski M (2006) Recent Pat Anti-Cancer Drug Disc 1:285–295CrossRefGoogle Scholar
  3. 3.
    Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalton Trans 39:8113–8127CrossRefGoogle Scholar
  4. 4.
    Gibson D (2009) Dalton Trans 0:10681–10689CrossRefGoogle Scholar
  5. 5.
    Todd RC, Lippard SJ (2009) Metallomics 1:280–291CrossRefGoogle Scholar
  6. 6.
    Bell DN, Liu JJ, Tingle MD, Rattel B, Meyer TU, McKeage MJ (2008) Clin Exp Pharmacol Physiol 35:1440–1446Google Scholar
  7. 7.
    Allardyce CS, Dyson PJ, Coffey J, Johnson N (2002) Rapid Commun Mass Spectrom 16:933–935CrossRefGoogle Scholar
  8. 8.
    Brauckmann C, Wehe C, Kieshauer M, Lanvers-Kaminsky C, Sperling M, Karst U (2013) Anal Bioanal Chem 405:1855–1864CrossRefGoogle Scholar
  9. 9.
    Hall MD, Okabe M, Shen D-W, Liang X-J, Gottesman MM (2008) Annu Rev Pharmacol Toxicol 48:495–535CrossRefGoogle Scholar
  10. 10.
    Jennerwein M, Andrews P (1995) Drug Metab Dispos 23:178–184Google Scholar
  11. 11.
    Ziehe M, Esteban-Fernandez D, Hochkirch U, Thomale J, Linscheid MW (2012) Metallomics 4:1098–1104CrossRefGoogle Scholar
  12. 12.
    García Sar D, Montes-Bayón M, Blanco González E, Sierra LM, Aguado L, Comendador MA, Koellensperger G, Hann S, Sanz-Medel A (2009) Anal Chem 81:9553–9560CrossRefGoogle Scholar
  13. 13.
    Pompella A, Visvikis A, Paolicchi A, Tata VD, Casini AF (2003) Biochem Pharmacol 66:1499–1503CrossRefGoogle Scholar
  14. 14.
    Kasherman Y, Sturup S, Gibson D (2009) J Med Chem 52:4319–4328CrossRefGoogle Scholar
  15. 15.
    Esteban-Fernandez D, Canas B, Pizarro I, Palacios MA, Gomez-Gomez MM (2007) J Anal At Spectrom 22:1113–1121CrossRefGoogle Scholar
  16. 16.
    Reedijk J (2009) Eur J Inorg Chem 2009:1303–1312CrossRefGoogle Scholar
  17. 17.
    Bosch ME, Sánchez AJR, Rojas FS, Ojeda CB (2008) J Pharm Biomed Anal 47:451–459CrossRefGoogle Scholar
  18. 18.
    Polak M, Plavec J, Trifonova A, Foldesi A, Chattopadhyaya J (1999) J Chem Soc, Perkin Trans 1 0:2835–2843CrossRefGoogle Scholar
  19. 19.
    Küng A, Strickmann DB, Galanski M, Keppler BK (2001) J Inorg Biochem 86:691–698CrossRefGoogle Scholar
  20. 20.
    Hann S, Zenker A, Galanski M, Bereuter TL, Stingeder G, Keppler BK (2001) Fresenius J Anal Chem 370:581–586CrossRefGoogle Scholar
  21. 21.
    Warnke U, Gysler J, Hofte B, Tjaden UR, van der Greef J, Kloft C, Schunack W, Jaehde U (2001) Electrophoresis 22:97–103CrossRefGoogle Scholar
  22. 22.
    Warnke U, Rappel C, Meier H, Kloft C, Galanski M, Hartinger CG, Keppler BK, Jaehde U (2004) ChemBioChem 5:1543–1549CrossRefGoogle Scholar
  23. 23.
    Garcia Sar D, Montes-Bayon M, Blanco Gonzalez E, Sanz-Medel A (2006) J Anal At Spectrom 21:861–868CrossRefGoogle Scholar
  24. 24.
    Jung Y, Lippard SJ (2007) Chem Rev 107:1387–1407CrossRefGoogle Scholar
  25. 25.
    Davies MS, Berners-Price SJ, Hambley TW (2000) Inorg Chem 39:5603–5613CrossRefGoogle Scholar
  26. 26.
    Binter A, Goodisman J, Dabrowiak JC (2006) J Inorg Biochem 100:1219–1224CrossRefGoogle Scholar
  27. 27.
    Park J-S, Kim SH, Lee N-K, Lee KJ, Hong S-C (2012) Phys Chem Chem Phys 14:3128–3133CrossRefGoogle Scholar
  28. 28.
    Todd RC, Lovejoy KS, Lippard SJ (2007) J Am Chem Soc 129:6370–6371CrossRefGoogle Scholar
  29. 29.
    Appleton TG, Berry RD, Davis CA, Hall JR, Kimlin HA (1984) Inorg Chem 23:3514–3521CrossRefGoogle Scholar
  30. 30.
    Prenxler PD, McFadyen WD (1997) J Inorg Biochem 68:279–282CrossRefGoogle Scholar
  31. 31.
    Centerwall CR, Goodisman J, Kerwood DJ, Dabrowiak JC (2005) J Am Chem Soc 127:12768–12769CrossRefGoogle Scholar
  32. 32.
    Bytzek AK, Hartinger CG (2012) Electrophoresis 33:622–634CrossRefGoogle Scholar
  33. 33.
    Hartinger CG, Keppler BK (2007) Electrophoresis 28:3436–3446CrossRefGoogle Scholar
  34. 34.
    Klampfl CW (2009) Electrophoresis 30:S83–S91CrossRefGoogle Scholar
  35. 35.
    Dhara SC (1970) Indian J Chem, Sect B 8:193–194Google Scholar
  36. 36.
    Basu A, Krishnamurthy S (2011) J Nucleic Acids 2011:16Google Scholar
  37. 37.
    Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Dalton Trans 14:1796–1802CrossRefGoogle Scholar
  38. 38.
    Zenker A, Galanski M, Bereuter TL, Keppler BK, Lindner W (2000) J Chromatogr B 745:211–219CrossRefGoogle Scholar
  39. 39.
    Chottard JC, Girault JP, Chottard G, Lallemand JY, Mansuy D (1980) J Am Chem Soc 102:5565–5572CrossRefGoogle Scholar
  40. 40.
    Song B, Oswald G, Bastian M, Sigel H, Lippert B (1996) Met Based Drugs 3:131–141CrossRefGoogle Scholar
  41. 41.
    Grabmann G, Meier SM, Scaffidi-Domianello YY, Galanski M, Keppler BK, Hartinger CG (2012) J Chromatogr A 1267:156–161CrossRefGoogle Scholar
  42. 42.
    Scovell WM, O’Connor T (1977) J Am Chem Soc 99:120–126CrossRefGoogle Scholar
  43. 43.
    Østergaard J, Jorgensen L, Engelbrecht Thomsen A, Weng Larsen S, Larsen C, Jensen H (2008) Electrophoresis 29:3320–3324CrossRefGoogle Scholar
  44. 44.
    Zorbas-Seifried S, Jakupec MA, Kukushkin NV, Grössl M, Hartinger CG, Semenova O, Zorbas H, Kukushkin VY, Keppler BK (2007) Mol Pharmacol 71:357–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gerlinde Grabmann
    • 1
  • Bernhard K. Keppler
    • 1
    • 2
  • Christian G. Hartinger
    • 1
    • 2
    • 3
  1. 1.Institute of Inorganic ChemistryUniversity of ViennaViennaAustria
  2. 2.Research Platform “Translational Cancer Therapy Research”University of ViennaViennaAustria
  3. 3.School of Chemical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations