Analytical and Bioanalytical Chemistry

, Volume 406, Issue 4, pp 943–956 | Cite as

NMR-based analysis of protein–ligand interactions

  • Olivier Cala
  • Florence Guillière
  • Isabelle Krimm


Physiological processes are mainly controlled by intermolecular recognition mechanisms involving protein–protein and protein–ligand (low molecular weight molecules) interactions. One of the most important tools for probing these interactions is high-field solution nuclear magnetic resonance (NMR) through protein-observed and ligand-observed experiments, where the protein receptor or the organic compounds are selectively detected. NMR binding experiments rely on comparison of NMR parameters of the free and bound states of the molecules. Ligand-observed methods are not limited by the protein molecular size and therefore have great applicability for analysing protein–ligand interactions. The use of these NMR techniques has considerably expanded in recent years, both in chemical biology and in drug discovery. We review here three major ligand-observed NMR methods that depend on the nuclear Overhauser effect—transferred nuclear Overhauser effect spectroscopy, saturation transfer difference spectroscopy and water–ligand interactions observed via gradient spectroscopy experiments—with the aim of reporting recent developments and applications for the characterization of protein–ligand complexes, including affinity measurements and structural determination.


Protein–ligand interactions NMR screening Transferred nuclear Overhauser effect Saturation transfer difference Water–ligand observed via gradient spectroscopy 



The authors thank the Agence Nationale de la Recherche (ANR-11-JS07-0008).


  1. 1.
    Keiser MJ, Irwin JJ, Shoichet BK (2010) The chemical basis of pharmacology. Biochemistry 49:10267–10276CrossRefGoogle Scholar
  2. 2.
    Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009CrossRefGoogle Scholar
  3. 3.
    Metz JT, Hajduk PJ (2010) Rational approaches to targeted polypharmacology: creating and navigating protein–ligand interaction networks. Curr Opin Chem Biol 14:498–504CrossRefGoogle Scholar
  4. 4.
    Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317CrossRefGoogle Scholar
  5. 5.
    Morelli X, Bourgeas R, Roche P (2011) Chemical and structural lessons from recent successes in protein–protein interaction inhibition (2P2I). Curr Opin Chem Biol 15:475–481CrossRefGoogle Scholar
  6. 6.
    Renaud J-P, Delsuc M-A (2009) Biophysical techniques for ligand screening and drug design. Curr Opin Pharmacol 9:622–628CrossRefGoogle Scholar
  7. 7.
    Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221CrossRefGoogle Scholar
  8. 8.
    Luk KC, Hyde EG, Trojanowski JQ, Lee VM-Y (2007) Sensitive fluorescence polarization technique for rapid screening of α-synuclein oligomerization/fibrillization inhibitors. Biochemistry 46:12522–12529CrossRefGoogle Scholar
  9. 9.
    Jonker N, Kool J, Irth H, Niessen WA (2011) Recent developments in protein–ligand affinity mass spectrometry. Anal Bioanal Chem 399:2669–2681CrossRefGoogle Scholar
  10. 10.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461Google Scholar
  11. 11.
    Huang S-Y, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908CrossRefGoogle Scholar
  12. 12.
    Joachimiak A (2009) High-throughput crystallography for structural genomics. Curr Opin Struct Biol 19:573–584CrossRefGoogle Scholar
  13. 13.
    Kay LE (2011) NMR studies of protein structure and dynamics – a look backwards and forwards. J Magn Reson 213:492–494CrossRefGoogle Scholar
  14. 14.
    Pellecchia M, Bertini I, Cowburn D, Dalvit C, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C, Meyer B, Oschkinat H, Peng J, Schwalbe H, Siegal G (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745CrossRefGoogle Scholar
  15. 15.
    Peng JW, Moore J, Abdul-Manan N (2004) NMR experiments for lead generation in drug discovery. Prog Nucl Magn Reson Spectrosc 44:225–256CrossRefGoogle Scholar
  16. 16.
    Goldflam M, Tarragó T, Gairí M, Giralt E (2012) NMR studies of protein–ligand interactions. In: Shekhtman A, Burz DS (eds) Protein NMR techniques. Humana, Totowa, pp 233–259CrossRefGoogle Scholar
  17. 17.
    Billeter M, Wagner G, Wüthrich K (2008) Solution NMR structure determination of proteins revisited. J Biomol NMR 42:155–158CrossRefGoogle Scholar
  18. 18.
    Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) Protein NMR spectroscopy. Academic, New YorkGoogle Scholar
  19. 19.
    Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42:864–890CrossRefGoogle Scholar
  20. 20.
    Erlanson D (2012) Introduction to fragment-based drug discovery. In: Davies TG, Hyvönen M (eds) Fragment-based drug discovery and X-ray crystallography. Springer, Berlin, pp 1–32Google Scholar
  21. 21.
    Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1:187–192CrossRefGoogle Scholar
  22. 22.
    Post CB (2003) Exchange-transferred NOE spectroscopy and bound ligand structure determination. Curr Opin Struct Biol 13:581–588CrossRefGoogle Scholar
  23. 23.
    Li D, DeRose E, London R (1999) The inter-ligand Overhauser effect: a powerful new NMR approach for mapping structural relationships of macromolecular ligands. J Biomol NMR 15:71–76CrossRefGoogle Scholar
  24. 24.
    Li D, London R (2002) Ligand discovery using the inter-ligand Overhauser effect: horse liver alcohol dehydrogenase. Biotechnol Lett 24:623–629CrossRefGoogle Scholar
  25. 25.
    Li D, Levy LA, Gabel SA, Lebetkin MS, DeRose EF, Wall MJ, Howell EE, London RE (2001) Interligand Overhauser effects in type II dihydrofolate reductase. Biochemistry 40:4242–4252CrossRefGoogle Scholar
  26. 26.
    Becattini B, Pellecchia M (2006) SAR by ILOEs: an NMR-based approach to reverse chemical genetics. Chem Eur J 12:2658–2662CrossRefGoogle Scholar
  27. 27.
    Rega MF, Wu B, Wei J, Zhang Z, Cellitti JF, Pellecchia M (2011) SAR by interligand nuclear Overhauser effects (ILOEs) based discovery of acylsulfonamide compounds active against Bcl-xL and Mcl-1. J Med Chem 54:6000–6013CrossRefGoogle Scholar
  28. 28.
    Rademacher C, Guiard J, Kitov PI, Fiege B, Dalton KP, Parra F, Bundle DR, Peters T (2011) Targeting norovirus infection—multivalent entry inhibitor design based on NMR experiments. Chem Eur J 17:7442–7453CrossRefGoogle Scholar
  29. 29.
    Orts J, Griesinger C, Carlomagno T (2009) The INPHARMA technique for pharmacophore mapping: a theoretical guide to the method. J Magn Reson 200:64–73CrossRefGoogle Scholar
  30. 30.
    Sánchez-Pedregal VM, Reese M, Meiler J, Blommers MJJ, Griesinger C, Carlomagno T (2005) The INPHARMA method: protein-mediated interligand NOEs for pharmacophore mapping. Angew Chem Int Ed 44:4172–4175CrossRefGoogle Scholar
  31. 31.
    Krimm I (2012) INPHARMA-based identification of ligand binding site in fragment-based drug design. Med Chem Commun 3:605–610CrossRefGoogle Scholar
  32. 32.
    Becattini B, Sareth S, Zhai D, Crowell KJ, Leone M, Reed JC, Pellecchia M (2004) Targeting apoptosis via chemical design: inhibition of Bid-induced cell death by small organic molecules. Chem Biol 11:1107–1117CrossRefGoogle Scholar
  33. 33.
    Chen J, Zhang Z, Stebbins JL, Zhang X, Hoffman R, Moore A, Pellecchia M (2007) A fragment-based approach for the discovery of isoform-specific p38α inhibitors. ACS Chem Biol 2:329–336CrossRefGoogle Scholar
  34. 34.
    Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay MMA, Moore JM (1999) The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol 6:755–769CrossRefGoogle Scholar
  35. 35.
    Becattini B, Culmsee C, Leone M, Zhai D, Zhang X, Crowell KJ, Rega MF, Landshamer S, Reed JC, Plesnila N, Pellecchia M (2006) Structure–activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc Natl Acad Sci USA 103:12602–12606CrossRefGoogle Scholar
  36. 36.
    Sledz P, Silvestre HL, Hung AW, Ciulli A, Blundell TL, Abell C (2010) Optimization of the interligand Overhauser effect for fragment linking: application to inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase. J Am Chem Soc 132:4544–4545CrossRefGoogle Scholar
  37. 37.
    Begley DW, Zheng S, Varani G (2010) Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping. Chem Biol Drug Des 76:218–233Google Scholar
  38. 38.
    Moseley HNB, Curto EV, Krishna NR (1995) Complete relaxation and conformational exchange matrix (CORCEMA) analysis of NOESY spectra of interacting systems; two-dimensional transferred NOESY. Academic, OrlandoGoogle Scholar
  39. 39.
    Orts J, Tuma J, Reese M, Grimm SK, Monecke P, Bartoschek S, Schiffer A, Wendt KU, Griesinger C, Carlomagno T (2008) Crystallography-independent determination of ligand binding modes. Angew Chem Int Ed 47:7736–7740CrossRefGoogle Scholar
  40. 40.
    Reese M, Sánchez-Pedregal VM, Kubicek K, Meiler J, Blommers MJJ, Griesinger C, Carlomagno T (2007) Structural basis of the activity of the microtubule-stabilizing agent epothilone A studied by NMR spectroscopy in solution. Angew Chem Int Ed 46:1864–1868CrossRefGoogle Scholar
  41. 41.
    Bartoschek S, Klabunde T, Defossa E, Dietrich V, Stengelin S, Griesinger C, Carlomagno T, Focken I, Wendt KU (2010) Drug design for G-protein-coupled receptors by a ligand-based NMR method. Angew Chem Int Ed 49:1426–1429CrossRefGoogle Scholar
  42. 42.
    Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788CrossRefGoogle Scholar
  43. 43.
    Bretonnet A-S, Jochum A, Walker O, Krimm I, Goekjian P, Marcillat O, Lancelin J-M (2007) NMR screening applied to the fragment-based generation of inhibitors of creatine kinase exploiting a new interaction proximate to the ATP binding site. J Med Chem 50:1865–1875CrossRefGoogle Scholar
  44. 44.
    Bhunia A, Bhattacharjya S, Chatterjee S (2012) Applications of saturation transfer difference NMR in biological systems. Drug Discov Today 17:505–513CrossRefGoogle Scholar
  45. 45.
    Angulo J, Nieto P (2011) STD-NMR: application to transient interactions between biomolecules—a quantitative approach. Eur Biophys J 40:1357–1369CrossRefGoogle Scholar
  46. 46.
    Wagstaff JL, Taylor SL, Howard MJ (2013) Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy. Mol Biosyst 9:571–577CrossRefGoogle Scholar
  47. 47.
    Vogtherr M, Peters T (2000) Application of NMR based binding assays to identify key hydroxy groups for intermolecular recognition. J Am Chem Soc 122:6093–6099CrossRefGoogle Scholar
  48. 48.
    Räuber C, Berger S (2010) 13C-NMR detection of STD spectra. Magn Reson Chem 48:91–93Google Scholar
  49. 49.
    Nagaraja CS (2006) Heteronuclear saturation transfer difference (HSTD) experiment for detection of ligand binding to proteins. Chem Phys Lett 420:340–346CrossRefGoogle Scholar
  50. 50.
    Xia Y, Zhu Q, Jun K-Y, Wang J, Gao X (2010) Clean STD-NMR spectrum for improved detection of ligand-protein interactions at low concentration of protein. Magn Reson Chem 48:918–924CrossRefGoogle Scholar
  51. 51.
    Furihata K, Shimotakahara S, Shibusawa Y, Tashiro M (2009) Application of WET sequence for the detection of the ligand signals resonating close to water. Magn Reson Chem 47:971–976CrossRefGoogle Scholar
  52. 52.
    Furithata K, Shimotakahara S, Shibusawa Y, Tashiro M (2010) An effective pulse sequence for detecting a ligand binding with a protein receptor using a WET sequence and the repeated Z-filters. Anal Sci 26:1107–1110CrossRefGoogle Scholar
  53. 53.
    Campos-Olivas R (2011) NMR screening and hit validation in fragment based drug discovery. Curr Top Med Chem 11:43–67CrossRefGoogle Scholar
  54. 54.
    Benie AJ, Moser R, Bäuml E, Blaas D, Peters T (2002) Virus − ligand interactions: identification and characterization of ligand binding by NMR spectroscopy. J Am Chem Soc 125:14–15CrossRefGoogle Scholar
  55. 55.
    Rademacher C, Krishna NR, Palcic M, Parra F, Peters T (2008) NMR experiments reveal the molecular basis of receptor recognition by a calicivirus. J Am Chem Soc 130:3669–3675CrossRefGoogle Scholar
  56. 56.
    Meinecke R, Meyer B (2001) Determination of the binding specificity of an integral membrane protein by saturation transfer difference NMR: RGD peptide ligands binding to Integrin αIIbβ3. J Med Chem 44:3059–3065CrossRefGoogle Scholar
  57. 57.
    Claasen B, Axmann M, Meinecke R, Meyer B (2004) Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin αIIbβ3 in native platelets than in liposomes. J Am Chem Soc 127:916–919CrossRefGoogle Scholar
  58. 58.
    Mari S, Serrano-Gómez D, Cañada FJ, Corbí AL, Jiménez-Barbero J (2005) 1D saturation transfer difference NMR experiments on living cells: the DC-SIGN/oligomannose interaction. Angew Chem Int Ed 44:296–298CrossRefGoogle Scholar
  59. 59.
    Pereira A, Pfeifer TA, Grigliatti TA, Andersen RJ (2009) Functional cell-based screening and saturation transfer double-difference NMR have identified haplosamate A as a cannabinoid receptor agonist. ACS Chem Biol 4:139–144CrossRefGoogle Scholar
  60. 60.
    Wang Y-S, Liu D, Wyss DF (2004) Competition STD NMR for the detection of high-affinity ligands and NMR-based screening. Magn Reson Chem 42:485–489CrossRefGoogle Scholar
  61. 61.
    McCoy MA, Senior MM, Wyss DF (2005) Screening of protein kinases by ATP-STD NMR spectroscopy. J Am Chem Soc 127:7978–7979CrossRefGoogle Scholar
  62. 62.
    Krimm I, Lancelin J-M, Praly J-P (2012) Binding evaluation of fragment-based scaffolds for probing allosteric enzymes. J Med Chem 55:1287–1295CrossRefGoogle Scholar
  63. 63.
    Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117CrossRefGoogle Scholar
  64. 64.
    Angulo J, Langpap B, Blume A, Biet T, Meyer B, Krishna NR, Peters H, Palcic MM, Peters T (2006) Blood group B galactosyltransferase: insights into substrate binding from NMR experiments. J Am Chem Soc 128:13529–13538CrossRefGoogle Scholar
  65. 65.
    Szczepina MG, Zheng RB, Completo GC, Lowary TL, Pinto BM (2009) STD-NMR studies suggest that two acceptor substrates for GlfT2, a bifunctional galactofuranosyltransferase required for the biosynthesis of Mycobacterium tuberculosis arabinogalactan, compete for the same binding site. ChemBioChem 10:2052–2059CrossRefGoogle Scholar
  66. 66.
    Ji Z, Yao Z, Liu M (2009) Saturation transfer difference nuclear magnetic resonance study on the specific binding of ligand to protein. Analy Biochem 385:380–382CrossRefGoogle Scholar
  67. 67.
    Angulo J, Enríquez-Navas PM, Nieto PM (2010) Ligand–receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates. Chem Eur J 16:7803–7812CrossRefGoogle Scholar
  68. 68.
    Mayer M, James TL (2004) NMR-based characterization of phenothiazines as a RNA binding scaffold. J Am Chem Soc 126:4453–4460CrossRefGoogle Scholar
  69. 69.
    Kemper S, Patel MK, Errey JC, Davis BG, Jones JA, Claridge TDW (2010) Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments. J Magn Reson 203:1–10CrossRefGoogle Scholar
  70. 70.
    Jayalakshmi V, Krishna NR (2002) Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand–receptor complexes. J Magn Reson 155:106–118CrossRefGoogle Scholar
  71. 71.
    Jayalakshmi V, Rama Krishna N (2004) CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities. J Magn Reson 168:36–45CrossRefGoogle Scholar
  72. 72.
    Jayalakshmi V, Biet T, Peters T, Krishna NR (2004) Refinement of the conformation of UDP − galactose bound to galactosyltransferase using the STD NMR intensity-restrained CORCEMA optimization. J Am Chem Soc 126:8610–8611CrossRefGoogle Scholar
  73. 73.
    Enríquez-Navas PM, Marradi M, Padro D, Angulo J, Penadés S (2011) A solution NMR study of the interactions of oligomannosides and the anti-HIV-1 2G12 antibody reveals distinct binding modes for branched ligands. Chem Eur J 17:1547–1560CrossRefGoogle Scholar
  74. 74.
    Angulo J, Díaz I, Reina JJ, Tabarani G, Fieschi F, Rojo J, Nieto PM (2008) Saturation transfer difference (STD) NMR spectroscopy characterization of dual binding mode of a mannose disaccharide to DC-SIGN. ChemBioChem 9:2225–2227CrossRefGoogle Scholar
  75. 75.
    Dalvit C, Cottens S, Ramage P, Hommel U (1999) Half-filter experiments for assignment, structure determination and hydration analysis of unlabelled ligands bound to 13C/15 N labelled proteins. J Biomol NMR 13:43–50CrossRefGoogle Scholar
  76. 76.
    Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman B (2001) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR 21:349–359CrossRefGoogle Scholar
  77. 77.
    Dalvit C, Pevarello P, Tatò M, Veronesi M, Vulpetti A, Sundström M (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18:65–68CrossRefGoogle Scholar
  78. 78.
    Barelier S, Pons J, Gehring K, Lancelin J-M, Krimm I (2010) Ligand specificity in fragment-based drug design. J Med Chem 53:5256–5266CrossRefGoogle Scholar
  79. 79.
    Dalvit C, Fasolini M, Flocco M, Knapp S, Pevarello P, Veronesi M (2002) NMR-based screening with competition water − ligand observed via gradient spectroscopy experiments: detection of high-affinity ligands. J Med Chem 45:2610–2614CrossRefGoogle Scholar
  80. 80.
    Ludwig C, Michiels PJA, Lodi A, Ride J, Bunce C, Günther UL (2008) Evaluation of solvent accessibility epitopes for different dehydrogenase inhibitors. ChemMedChem 3:1371–1376CrossRefGoogle Scholar
  81. 81.
    Gossert A, Henry C, Blommers MJ, Jahnke W, Fernández C (2009) Time efficient detection of protein–ligand interactions with the polarization optimized PO-WaterLOGSY NMR experiment. J Biomol NMR 43:211–217CrossRefGoogle Scholar
  82. 82.
    Hu J, Eriksson P-O, Kern G (2010) Aroma WaterLOGSY: a fast and sensitive screening tool for drug discovery. Magn Reson Chem 48:909–911CrossRefGoogle Scholar
  83. 83.
    Karle M, Knecht W, Xue Y (2012) Discovery of benzothiazole guanidines as novel inhibitors of thrombin and trypsin IV. Bioorg Med Chem Lett 22:4839–4843CrossRefGoogle Scholar
  84. 84.
    Ludwig C, Michiels PJA, Wu X, Kavanagh KL, Pilka E, Jansson A, Oppermann U, Günther UL (2007) SALMON: solvent accessibility, ligand binding, and mapping of ligand orientation by NMR spectroscopy. J Med Chem 51:1–3CrossRefGoogle Scholar
  85. 85.
    Szczepina MG, Bleile DW, Müllegger J, Lewis AR, Pinto BM (2011) WaterLOGSY NMR experiments in conjunction with molecular-dynamics simulations identify immobilized water molecules that bridge peptide mimic MDWNMHAA to anticarbohydrate antibody SYA/J6. Chem Eur J 17:11438–11445CrossRefGoogle Scholar
  86. 86.
    Potenza D, Vasile F, Belvisi L, Civera M, Araldi EMV (2011) STD and trNOESY NMR study of receptor–ligand interactions in living cancer cells. ChemBioChem 12:695–699CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olivier Cala
    • 1
    • 2
    • 3
  • Florence Guillière
    • 1
    • 2
    • 3
  • Isabelle Krimm
    • 1
    • 2
    • 3
  1. 1.Université de LyonLyonFrance
  2. 2.Université Lyon 1VilleurbanneFrance
  3. 3.CNRS, UMR5280 Institut des Sciences AnalytiquesVilleurbanneFrance

Personalised recommendations