Analytical and Bioanalytical Chemistry

, Volume 405, Issue 15, pp 5237–5247 | Cite as

Identification of the nitroaromatic explosives in post-blast samples by online solid phase extraction using molecularly imprinted silica sorbent coupled with reversed-phase chromatography

  • Sonia Lordel-Madeleine
  • Véronique Eudes
  • Valérie PichonEmail author
Research Paper


In a previous work, a molecularly imprinted silica (MIS) sorbent was synthesized for the selective extraction of nitroaromatic explosives from real samples. This MIS packed in a cartridge was used for an off-line solid phase extraction procedure mainly based on hydrophobic and ππ interactions. In this work, the MIS was packed in a precolumn to be connected online with a reversed-phase LC system and a diode array detector. For this, the chromatographic conditions were first studied to obtain the separation of 1,3-dinitrobenzene, 1,3,5-trinitrobenzene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2,4,6-trinitrotoluene, and tetryl. An optimized procedure dedicated to the selective treatment of aqueous samples was then developed with the MIS for the simultaneous extraction of the nitroaromatic compounds commonly used as explosives. Finally, the four nitrotoluenes were selectively extracted and determined simultaneously with extraction recoveries higher than 90 % using the online device composed of the MIS coupled with a diphenyl chromatographic column. The potential of this sorbent was highlighted by its use for the cleanup of simulated post-blast samples.


Nitroaromatic explosives Molecularly imprinted silica Online solid phase extraction Selective extraction procedure Post-blast samples 


  1. 1.
    Douse JMF (1987) Improved method for the trace analysis of explosives by silica capillary column gas chromatography with thermal energy analysis detection. J Chromatogr A 410:181–189CrossRefGoogle Scholar
  2. 2.
    Calderara S, Gardebas D, Martinez F, Khong SP (2004) Organic explosives analysis using on column-ion trap EI/NICI GC-MS with an external source. J Forensic Sci 49(5):1005–1008CrossRefGoogle Scholar
  3. 3.
    Perr JM, Furton KG, Almirall JR (2005) Gas chromatography positive chemical ionization and tandem mass spectrometry for the analysis of organic high explosives. Talanta 67(2):430–436CrossRefGoogle Scholar
  4. 4.
    Walsh ME (2001) Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta 54(3):427–438CrossRefGoogle Scholar
  5. 5.
    Bader M, Göen T, Müller J, Angerer J (1998) Analysis of nitroaromatic compounds in urine by gas chromatography–mass spectrometry for the biological monitoring of explosives. J Chromatogr B 710(1–2):91–99Google Scholar
  6. 6.
    Groom CA, Halasza A, Paquet L, Thiboutot S, Ampleman G, Hawari J (2005) Detection of nitroaromatic and cyclic nitramine compounds by cyclodextrin assisted capillary electrophoresis quadrupole ion trap mass spectrometry. J Chromatogr A 1072(1):73–82CrossRefGoogle Scholar
  7. 7.
    Northrop DM, Martire DE, MacCrehan WA (1991) Separation and identification of organic gunshot and explosive constituents by micellar electrokinetic capillary electrophoresis. Anal Chem 63(10):1038–1042CrossRefGoogle Scholar
  8. 8.
    Sarazin C, Delaunay N, Varenne A, Costanza C, Eudes V, Gareil P (2010) Capillary and microchip electrophoretic analyses of explosives and their residues. Sep Purif Rev 39(1):63–94CrossRefGoogle Scholar
  9. 9.
    Marple RL, LaCourse WR (2005) A platform for on-site environmental analysis of explosives using high performance liquid chromatography with UV absorbance and photo-assisted electrochemical detection. Talanta 66(3):581–590CrossRefGoogle Scholar
  10. 10.
    Zhao X, Yinon J (2002) Characterization and origin identification of 2,4,6-trinitrotoluene through its by-product isomers by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 946(1–2):125–132Google Scholar
  11. 11.
    Song L, Bartmess JE (2009) Liquid chromatography/negative ion atmospheric pressure photoionization mass spectrometry: a highly sensitive method for the analysis of organic explosives. Rapid Commun Mass Spectrom 23(1):77–84CrossRefGoogle Scholar
  12. 12.
    Schmidt AC, Niehus B, Matysik FM, Engewald W (2006) Identification and quantification of polar nitroaromatic compounds in explosive-contaminated waters by means of HPLC-ESI-MS-MS and HPLC-UV. Chromatographia 63(1):1–11CrossRefGoogle Scholar
  13. 13.
    Hilmi A, Luong JHT, Nguyen AL (1999) Determination of explosives in soil and ground water by liquid chromatography–amperometric detection. J Chromatogr A 844(1–2):97–110Google Scholar
  14. 14.
    Gaurav D, Malik AK, Rai PK (2007) High-performance liquid chromatographic methods for the analysis of explosives. Crit Rev Anal Chem 37(4):227–268CrossRefGoogle Scholar
  15. 15.
    Tachon R, Pichon V, Barbe Le Borgne M, Minet JJ (2007) Use of porous graphitic carbon for the analysis of nitrate ester, nitramine and nitroaromatic explosives and by-products by liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry. J Chromatogr A 1154(1–2):174–181Google Scholar
  16. 16.
    Jenkins TF, Miyares PH, Myers KF, McCormick EF, Strong AB (1994) Comparison of solid phase extraction with salting-out solvent extraction for preconcentration of nitroaromatic and nitramine explosives from water. Anal Chim Acta 289(1):69–78CrossRefGoogle Scholar
  17. 17.
    Psillakis E, Kalogerakis N (2001) Application of solvent microextraction to the analysis of nitroaromatic explosives in water samples. J Chromatogr A 907(1–2):211–219Google Scholar
  18. 18.
    Psillakis E, Kalogerakis N (2001) Solid-phase microextraction versus single-drop microextraction for the analysis of nitroaromatic explosives in water samples. J Chromatogr A 938(1–2):113–120Google Scholar
  19. 19.
    Ebrahimzadeh H, Yamini Y, Kamarei F (2009) Optimization of dispersive liquid–liquid microextraction combined with gas chromatography for the analysis of nitroaromatic compounds in water. Talanta 79(5):1472–1477CrossRefGoogle Scholar
  20. 20.
    Babaee S, Beiraghi A (2010) Micellar extraction and high performance liquid chromatography–ultra violet determination of some explosives in water samples. Anal Chim Acta 662(1):9–13CrossRefGoogle Scholar
  21. 21.
    Psillakis E, Mantzavinos D, Kalogerakis N (2004) Development of a hollow fibre liquid phase microextraction method to monitor the sonochemical degradation of explosives in water. Anal Chim Acta 501(1):3–10CrossRefGoogle Scholar
  22. 22.
    Renner T, Baumgarten D, Unger K (1997) Analysis of organic pollutants in water at trace levels using fully automated solid-phase extraction coupled to high-performance liquid chromatography. Chromatographia 45(1):199–205CrossRefGoogle Scholar
  23. 23.
    Astratov M, PreiB A, Levsen K, Wiinsch G (1997) Identification of pollutants in ammunition hazardous waste sites by thermospray HPLC/MS. Int J Mass Spectrom Ion Processes 167–168:481–502CrossRefGoogle Scholar
  24. 24.
    Kruppa J, PreiB A, Levsen K, Kabus HP (1996) Off-line and on-line extraction of explosives and related compounds from aqueous samples using solid sorbents. Acta Hydroch et Hydrob 24(5):226–231CrossRefGoogle Scholar
  25. 25.
    Crescenzi C, Albinana J, Carlsson H, Holmgren E, Batlle R (2007) On-line strategies for determining trace levels of nitroaromatic explosives and related compounds in water. J Chromatogr A 1153(1–2):186–193Google Scholar
  26. 26.
    Thompson RQ, Fetterrolf DD, Miller ML, Mothershead RF II (1999) Aqueous recovery from cotton swabs of organic explosives residue followed by solid phase extraction. J Forensic Sci 44(4):795–804Google Scholar
  27. 27.
    Tachon R, Pichon V, Barbe Le Borgne M, Minet J-J (2008) Comparison of solid-phase extraction sorbents for sample clean-up in the analysis of organic explosives. J Chromatogr A 1185(1):1–8CrossRefGoogle Scholar
  28. 28.
    Gaurav D, Kaur V, Kumara A, Malik AK, Rai PK (2007) SPME-HPLC: a new approach to the analysis of explosives. J Hazard Mater 147(3):691–697CrossRefGoogle Scholar
  29. 29.
    Gaurav D, Malik AK, Rai PK (2009) Development of a new SPME-HPLC-UV method for the analysis of nitro explosives on reverse phase amide column and application to analysis of aqueous samples. J Hazard Mater 172(2–3):1652–1658CrossRefGoogle Scholar
  30. 30.
    Jönsson S, Gustavsson L, van Bavel B (2007) Analysis of nitroaromatic compounds in complex samples using solid-phase microextraction and isotope dilution quantification gas chromatography–electron-capture negative ionisation mass spectrometry. J Chromatogr A 1164(1–2):65–73Google Scholar
  31. 31.
    Guan W, Xu F, Liu W, Zhao J, Guan Y (2007) A new poly(phthalazine ether sulfone ketone)-coated fiber for solid-phase microextraction to determine nitroaromatic explosives in aqueous samples. J Chromatogr A 1147(1):59–65CrossRefGoogle Scholar
  32. 32.
    Pichon V (2000) Solid-phase extraction for multiresidue analysis of organic contaminants in water. J Chromatogr A 885(1–2):195–215Google Scholar
  33. 33.
    Lordel S, Chapuis-Hugon F, Eudes V, Pichon V (2010) Development of imprinted materials for the selective extraction of nitroaromatic explosives. J Chromatogr A 1217(43):6674–6680CrossRefGoogle Scholar
  34. 34.
    Lordel S, Chapuis-Hugon F, Eudes V, Pichon V (2011) Selective extraction of nitroaromatic explosives by using molecularly imprinted silica sorbents. Anal Bioanal Chem 399(1):449–458CrossRefGoogle Scholar
  35. 35.
    Pichon V, Haupt K (2006) Affinity separations on molecularly imprinted polymers with special emphasis on solid-phase extraction. J Liq Chromatogr Related Technol 29(7):989–1023Google Scholar
  36. 36.
    Haupt K (2003) Peer reviewed: molecularly imprinted polymers: the next generation. Anal Chem 75(17):376A–383ACrossRefGoogle Scholar
  37. 37.
    Chapuis F, Mullot JU, Pichon V, Tuffal G, Hennion MC (2006) Molecularly imprinted polymers for the clean-up of a basic drug from environmental and biological samples. J Chromatogr A 1135(2):127–134CrossRefGoogle Scholar
  38. 38.
    Pichon V, Chapuis-Hugon F (2008) Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta 622(1–2):48–61CrossRefGoogle Scholar
  39. 39.
    Hugon-Chapuis F, Mullot JU, Tuffal G, Hennion MC, Pichon V (2008) Selective and automated sample pretreatment by molecularly imprinted polymer for the analysis of the basic drug alfuzosin from plasma. J Chromatogr A 1196–1197:73–80Google Scholar
  40. 40.
    Da Costa Silva RG, Augusto F (2006) Sol–gel molecular imprinted ormosil for solid-phase extraction of methylxanthines. J Chromatogr A 1114(2):216–223CrossRefGoogle Scholar
  41. 41.
    Costa Silva RG, Morais Vigna CR, Bottoli CBG, Collins CH, Augusto F (2010) Molecularly imprinted silica as a selective SPE sorbent for triazine herbicides. J Sep Sci 33(9):1319–1324Google Scholar
  42. 42.
    Jiang X, Tian W, Zhao C, Zhang H, Liu M (2007) A novel sol–gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A. Talanta 72(1):119–125CrossRefGoogle Scholar
  43. 43.
    Olwill A, Hughes H, O’Riordain M, McLoughlin P (2004) The use of molecularly imprinted sol–gels in pharmaceutical separations. Biosens Bioelectron 20(6):1045–1050CrossRefGoogle Scholar
  44. 44.
    Farrington K, Regan F (2009) Molecularly imprinted sol gel for ibuprofen: an analytical study of the factors influencing selectivity. Talanta 78(3):653–659CrossRefGoogle Scholar
  45. 45.
    Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron 25(5):1166–1172CrossRefGoogle Scholar
  46. 46.
    Bunte G, Heil M, Röseling D, Hürttlen J, Pontius H, Krause H (2009) Trace detection of explosives vapours by molecularly imprinted polymers for security measures. Propellants Explos Pyrotech 34(3):245–251CrossRefGoogle Scholar
  47. 47.
    Bunte G, Hürttlen J, Pontius H, Hartlieb K, Krause H (2007) Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Anal Chim Acta 591(1):49–56CrossRefGoogle Scholar
  48. 48.
    Gao D, Zhang Z, Wu M, Xie C, Guan G, Wang D (2007) A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc 129(25):7859–7866CrossRefGoogle Scholar
  49. 49.
    Holthoff EL, Stratis-Cullum DN, Hankus ME (2011) A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering. Sensors 11(3):2700–2714CrossRefGoogle Scholar
  50. 50.
    Roeseling D, Tuercke T, Krause H, Loebbecke S (2009) Microreactor-based synthesis of molecularly imprinted polymer beads used for explosive detection. Org Process Res Dev 13(5):1007–1013CrossRefGoogle Scholar
  51. 51.
    Stringer RC, Gangopadhyay S, Grant SA (2010) Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Anal Chem 82(10):4015–4019CrossRefGoogle Scholar
  52. 52.
    Trammell SA, Zeinali M, Melde BJ, Charles PT, Velez FL, Dinderman MA, Kusterbeck A, Markowitz MA (2008) Nanoporous organosilicas as preconcentration materials for the electrochemical detection of trinitrotoluene. Anal Chem 80(12):4627–4633CrossRefGoogle Scholar
  53. 53.
    Walker NR, Linman MJ, Timmers MM, Dean SL, Burkett CM, Lloyd JA, Keelor JD, Baughman BM, Edmiston PL (2007) Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol–gel sensing films. Anal Chim Acta 593(1):82–91CrossRefGoogle Scholar
  54. 54.
    Xie C, Liu B, Wang Z, Gao D, Guan G, Zhang Z (2008) Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem 80(2):437–443CrossRefGoogle Scholar
  55. 55.
    Xie C, Zhang Z, Wang D, Guan G, Gao D, Liu J (2006) Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal Chem 78(24):8339–8346CrossRefGoogle Scholar
  56. 56.
    Edmiston PL, Campbell DP, Gottfried DS, Baughman J, Timmers MM (2010) Detection of vapor phase trinitrotoluene in the parts-per-trillion range using waveguide interferometry. Sens Actuators B 143(2):574–582CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sonia Lordel-Madeleine
    • 1
    • 2
  • Véronique Eudes
    • 2
  • Valérie Pichon
    • 1
    Email author
  1. 1.Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM, UMR CNRS-UPMC-ESPCI ParisTech 7195 PECSA)ESPCI ParisTechParisFrance
  2. 2.Laboratoire Central de la Préfecture de PoliceParisFrance

Personalised recommendations