Analytical and Bioanalytical Chemistry

, Volume 405, Issue 15, pp 5333–5339 | Cite as

Determining urea levels in dialysis human serum by means of headspace solid phase microextraction coupled with ion mobility spectrometry and on the basis of nanostructured polypyrrole film

Research Paper

Abstract

A simple and sensitive headspace (HS) solid phase microextraction (SPME) coupled with ion mobility spectrometry (IMS) method is presented for analysis of urea in dialysis human serum samples. A dodecylbenzenesulfonate-doped polypyrrole coating was used as a fiber for SPME. The HS-SPME–IMS method exhibits good repeatability (relative standard deviation of 3 % or less), simplicity, and good sensitivity. The influence of various analytical parameters such as pH, ionic strength, extraction time and temperature was investigated and the parameters were optimized. The calibration graph was linear in the range from 5 to 50 μg mL−1, and the detection limit was 2 μg mL−1. The method was applied successfully for determination of urea in human serum and with acceptable recovery (more than 98 %). Finally, a standard addition calibration method was applied to the HS-SPME-IMS method for the analysis of human serum samples before and at the end of dialysis. The proposed method appears to be suitable for the analysis of urea in serum samples as it is not time-consuming and requires only small quantities of the sample without any derivatization process.

Figure

The ion mobility spectrum obtained by HS-SPME–IMS using a PPy fiber under optimum conditions from headspace of 5 mL (A): 2 µg mL-1 of urea solution, (B): non-spiked control serum sample, (C): non-spiked patient 1 serum sample before dialysis, (D) non-spiked patient 1 serum sample at the end of dialysis, (E) spiked patient 1 serum sample at the end of dialysis with 10 µg mL−1 of urea, (F): non-spiked patient 2 serum sample before dialysis, (G): non-spiked patient 2 serum sample at the end of dialysis, (H): spiked patient 2 serum sample at the end of dialysis with 10 µg mL−1 of urea

Keywords

Biological samples Extraction Solid phase extraction Solid phase microextraction Sampling Thin films 

Notes

Acknowledgment

This work was supported with grants from Tarbiat Modares University Research Council.

References

  1. 1.
    O'Reilly SE, Kelly M, Morrin A, Smyth MR, Killard AJ (2011) Anal Chim Acta 697:98–102CrossRefGoogle Scholar
  2. 2.
    Eggenstein C, Borchardt M, Diekmann C, Grundig B, Dumschat C, Cammann K, Knoll M, Spener F (1999) Biosens Bioelectron 14:33–41CrossRefGoogle Scholar
  3. 3.
    Koncki R, Chudzik A, Walcerz I (1999) J Pharma Biomed Anal 21:51–57CrossRefGoogle Scholar
  4. 4.
    Trivedi UB, Lakshminarayana D, Kothari IL, Patel NG, Kapse HN, Makhija KK, Patel PB, Panchal CJ (2009) Sens Actuators B 140:260–266CrossRefGoogle Scholar
  5. 5.
    Wałcerz I, Głąb S, Koncki R (1998) Anal Chim Acta 369:129–137CrossRefGoogle Scholar
  6. 6.
    Clark S, Francis PS, Conlan XA, Barnett NW (2007) J Chromatogr A 1161:207–213CrossRefGoogle Scholar
  7. 7.
    Castro MCM, Romao JE, Marcondes J, Marcondes M (2001) Nephrol Dial Transplant 16:1814–1817CrossRefGoogle Scholar
  8. 8.
    Lakard B, Magnin D, Deschaume O, Vanlancker G, Glinel K, Demoustier-Champagne S, Nysten B, Jonas AM, Bertrand P, Yunus S (2011) Biosens Bioelectron 26:4139–4145CrossRefGoogle Scholar
  9. 9.
    Lee WY, Kim SR, Kim TH, Lee KS, Shin MC, Park JK (2000) Anal Chim Acta 404:195–203CrossRefGoogle Scholar
  10. 10.
    Miyauchi T, Miyachi Y, Takahashi M, Ishikawa N, Mori H (2010) Anal Sciences 26:847–852CrossRefGoogle Scholar
  11. 11.
    Heitland P, Koster HD (2006) Clin Chim Acta 365:310–318CrossRefGoogle Scholar
  12. 12.
    Usman Ali SM, Ibupoto ZH, Salman S, Nur O, Willander M, Danielsson B (2011) Sens Actuators B 160:637–643CrossRefGoogle Scholar
  13. 13.
    Tabrizchi M, ILbeigi V (2010) J Hazard Mater 176:692–696CrossRefGoogle Scholar
  14. 14.
    Guerra P, Lai H, Almirall JR (2008) J Sep Sci 31:2891–2898CrossRefGoogle Scholar
  15. 15.
    Lai H, Leung A, Magee M, Almirall JR (2010) Anal Bioanal Chem 396:2997–3007CrossRefGoogle Scholar
  16. 16.
    Karimi A, Alizadeh N (2009) Talanta 79:479–485CrossRefGoogle Scholar
  17. 17.
    Gura S, Guerra-Diaz P, Lai H, Almirall JR (2009) Drug Test Anal 1:355–362CrossRefGoogle Scholar
  18. 18.
    Shahdousti P, Alizadeh N (2011) Anal Chim Acta 684:58–62CrossRefGoogle Scholar
  19. 19.
    Colgrave ML, Bramwell CJ, Creaser CS (2003) Int J Mass Spectrom 229:209–216CrossRefGoogle Scholar
  20. 20.
    Beegle LW, Kanik I (2001) Anal Chem 73:3028–3034CrossRefGoogle Scholar
  21. 21.
    Steiner WE, Clowers BH, Hill HH Jr (2003) Anal Bioanal Chem 375:99–102Google Scholar
  22. 22.
    Hashemian Z, Mardihallaj A, Khayamian T (2010) Talanta 81:1081–1087CrossRefGoogle Scholar
  23. 23.
    Tiebe C, Miessner H, Koch B, Hübert T (2009) Anal Bioanal Chem 395:2313–2323CrossRefGoogle Scholar
  24. 24.
    Arce L, Menendez M, Delgado RG, Valcarcel M (2008) Trends Anal Chem 27:139–151CrossRefGoogle Scholar
  25. 25.
    Alizadeh N, Jafari M, Mohammadi A (2009) J Hazard Mater 169:861–867CrossRefGoogle Scholar
  26. 26.
    Ulrich S (2000) J Chromatogr A 902:167–194CrossRefGoogle Scholar
  27. 27.
    Vidal JC, Garcia E, Castillo JR (1999) Anal Chim Acta 385:213–222CrossRefGoogle Scholar
  28. 28.
    Campbell TE, Hodgson AJ, Wallace GG (1999) Electroanalysis 11:215–222CrossRefGoogle Scholar
  29. 29.
    Jerome C, Labayc D, Bodart I, Jerome R (1999) Synth Met 101:3–4CrossRefGoogle Scholar
  30. 30.
    Smela E (1999) J Micromech Microeng 9:1–18CrossRefGoogle Scholar
  31. 31.
    Ilo T, Buhlmann P, Umezawa Y (1999) Anal Chem 71:1699–1705CrossRefGoogle Scholar
  32. 32.
    Wan M (2008) Adv Mater 20:2926–2932CrossRefGoogle Scholar
  33. 33.
    Zhang F, Nyberg T, Inganäs O (2002) Nano Lett 2:1373–1377CrossRefGoogle Scholar
  34. 34.
    Lee JI, Cho SH, Park SM, Kim JK, Kim JK, Yu JW, Kim YC, Russell TP (2008) Nano Lett 8:2315–2320CrossRefGoogle Scholar
  35. 35.
    Wang F, Ma S, Zhang D, Cooks RG (1998) J Phys Chem A 102:2988–2994CrossRefGoogle Scholar
  36. 36.
    Bernhard AM, Czekaj I, Elsener M, Wokaun A, Krocher O (2011) J Phys Chem A 115:2581–2589CrossRefGoogle Scholar
  37. 37.
    Lambropoulou DA, Albanis TA (2004) Anal Chim Acta 514:125–130CrossRefGoogle Scholar
  38. 38.
    Doong RA, Liao PL (2001) J Chromatogr A 918:177–188CrossRefGoogle Scholar
  39. 39.
    Zuliani T, Lespes G, Milacic R, Scancar J, Gautier MP (2006) J Chromatogr A1132:234–240Google Scholar
  40. 40.
    Moreno DV, Ferrera ZS, Rodrıguez JJS (2006) Anal Chim Acta 571:51–57CrossRefGoogle Scholar
  41. 41.
    Hook GL, Kimm G, Koch D, Savage PB, Ding B, Smith PA (2003) J Chromatogra A 992:1–9CrossRefGoogle Scholar
  42. 42.
    Pozzi R, Pinelli F, Bocchini P, Galletti GC (2004) Anal Chim Acta 504:313–317CrossRefGoogle Scholar
  43. 43.
    Bell SE, Ewing RG, Eiceman GA (1994) J Am Soc Mass Spectrom 5:177–185CrossRefGoogle Scholar
  44. 44.
    Chen JP, Isa K (1998) J Mass Spectrom Soc Jpn 46:299–303CrossRefGoogle Scholar
  45. 45.
    Alizadeh N, Shahdousti P, Nabavi S, Tabrizchi M (2011) Int J Mass Spectrom 308:18–25CrossRefGoogle Scholar
  46. 46.
    Slaugther G (2012) IEEE Sens J 12:821–827CrossRefGoogle Scholar
  47. 47.
    Sahney R, Puri BK (2005) Anal Chim Acta 542:157–161CrossRefGoogle Scholar
  48. 48.
    Goeyens L, Kindermans N, Abu Yusuf M, Elskens M (1998) Estuar Coast Shelf Sci 47:415–418CrossRefGoogle Scholar
  49. 49.
    Wittwer FG, Gallardo P, Reyes J, Opitz H (1999) Prev Vet Med 38:159–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceTarbiat Modares UniversityTehranIran

Personalised recommendations