Analytical and Bioanalytical Chemistry

, Volume 405, Issue 17, pp 5725–5741

Advances in electrochemical detection for study of neurodegenerative disorders

Review

Abstract

Several severe neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and prion-associated transmissible spongiform encephalopathies, have been linked to dysregulation of specific proteins capable of self-assembly into deleterious fibrillar aggregates termed amyloids. A wide range of analytical techniques has been used to clarify the mechanisms of these protein-misfolding processes, in the hope of developing effective therapeutic treatment. Most of these studies have relied heavily on conventional methods of protein characterization, notably circular dichroism spectroscopy, thioflavin T fluorescence, transmission electron microscopy, and atomic force microscopy, which are particularly suitable for monitoring later-stage aggregate formation. Although electrochemical methods of protein detection have existed for some time, they have only recently gained prominence as a powerful tool for studying the early stages of protein aggregation during which the more toxic soluble amyloid species form. Electrochemical detection methods include direct detection of intrinsic redox-active amino acid residues, protein-catalyzed hydrogen evolution, use of extrinsic β-sheet binding mediators, and impedance spectroscopy. In this review, we evaluate the use of electrochemistry for study of protein aggregation related to neurodegenerative disorders.

Keywords

Amyloid aggregation Prion Electrochemical Tyrosine oxidation Peak H Impedance spectroscopy 

References

  1. 1.
    Aguzzi A, Calella AM (2009) Prions: Protein aggregation and infectious diseases. Physiol Rev 89:1105–1152CrossRefGoogle Scholar
  2. 2.
    Rountree JSS, Butters TD, Wormald MR, Boomkamp SD, Dwek RA, Asano N, Ikeda K, Evinson EL, Nash RJ, Fleet GWJ (2009) Design, synthesis and biological evaluation of enantiomeric beta-n-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease. Chem Med Chem 4:378–392Google Scholar
  3. 3.
    Muoio DM, Newgard CB (2008) Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nature Rev Mol Cell Biol 9:193–205CrossRefGoogle Scholar
  4. 4.
    Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D’Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nature Cell Biology 12:863–875CrossRefGoogle Scholar
  5. 5.
    Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332CrossRefGoogle Scholar
  6. 6.
    Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population - Prevalence estimates using the 2000 census. Arch Neurol 60:1119–1122CrossRefGoogle Scholar
  7. 7.
    Hindle JV (2010) Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 39:156–161CrossRefGoogle Scholar
  8. 8.
    Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, PericakVance MA, Risch N, vanDuijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease - A meta-analysis. J Am Med Assoc 278:1349–1356CrossRefGoogle Scholar
  9. 9.
    Rising Tide: The impact of dementia on Canadian society (2012) Alzheimer’s Society of Canada, Toronto. www.alzheimer.ca/. Accessed 1 Dec 2012
  10. 10.
    Yin F, Liu J, Ji X, Wang Y, Zidichouski J, Zhang J (2011) Baicalin prevents the production of hydrogen peroxide and oxidative stress induced by A beta aggregation in SH-SY5Y cells. Neurosci Lett 492:76–79CrossRefGoogle Scholar
  11. 11.
    Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 107:7710–7715CrossRefGoogle Scholar
  12. 12.
    Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566CrossRefGoogle Scholar
  13. 13.
    Grelle G, Otto A, Lorenz M, Frank RF, Wanker EE, Bieschke J (2011) Black tea theaflavins inhibit formation of toxic amyloid-beta and alpha-synuclein fibrils. Biochemistry 50:10624–10636CrossRefGoogle Scholar
  14. 14.
    Piazzi L, Cavalli A, Colizzi F, Belluti F, Bartolini M, Mancini F, Recanatini M, Andrisano V, Rampa A (2008) Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett 18:423–426CrossRefGoogle Scholar
  15. 15.
    Rizzo S, Bartolini M, Ceccarini L, Piazzi L, Gobbi S, Cavalli A, Recanatini M, Andrisano V, Rampa A (2010) Targeting Alzheimer’s disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg Med Chem 18:1749–1760CrossRefGoogle Scholar
  16. 16.
    Bolognesi ML, Bartolini M, Tarozzi A, Morroni F, Lizzi F, Milelli A, Minarini A, Rosini M, Hrelia P, Andrisano V, Melchiorre C (2011) Multitargeted drugs discovery: Balancing anti-amyloid and anticholinesterase capacity in a single chemical entity. Bioorg Med Chem Lett 21:2655–2658CrossRefGoogle Scholar
  17. 17.
    Bush AI (2008) Drug development based on the metals hypothesis of Alzheimer’s disease. J Alz Dis 15:223–240Google Scholar
  18. 18.
    Hindo SS, Mancino AM, Braymer JJ, Liu Y, Vivekanandan S, Ramamoorthy A, Lim MH (2009) Small molecule modulators of copper-induced A beta aggregation. J Am Chem Soc 131:16663–16665CrossRefGoogle Scholar
  19. 19.
    Mancino AM, Hindo SS, Kochi A, Lim MH (2009) Effects of clioquinol on metal-triggered amyloid-beta aggregation revisited. Inorg Chem 48:9596–9598CrossRefGoogle Scholar
  20. 20.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRefGoogle Scholar
  21. 21.
    Cohen AS (1967) Amyloidosis. New Engl J Med 277:522–530CrossRefGoogle Scholar
  22. 22.
    Elghetany MT, Saleem A (1988) Methods for staining amyloid in tissues - A review. Stain Technol 63:201–212Google Scholar
  23. 23.
    Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M (2005) Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29:381–393CrossRefGoogle Scholar
  24. 24.
    Bolognesi B, Kumita JR, Barros TP, Esbjorner EK, Luheshi LM, Crowther DC, Wilson MR, Dobson CM, Favrin G, Yerbury JJ (2010) ANS binding reveals common features of cytotoxic amyloid species. ACS Chem Biol 5:735–740CrossRefGoogle Scholar
  25. 25.
    Almeida MR, Saraiva MJ (2012) Clearance of extracellular misfolded proteins in systemic amyloidosis: Experience with transthyretin. FEBS Lett 586:2891–2896CrossRefGoogle Scholar
  26. 26.
    Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27:570–575CrossRefGoogle Scholar
  27. 27.
    Glabe CG, Kayed R (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66:S74–S78CrossRefGoogle Scholar
  28. 28.
    Kayed R, Glabe CG (2006) Conformation-dependent anti-amyloid oligomer antibodies. Methods Enzymol 413:326–344CrossRefGoogle Scholar
  29. 29.
    Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid beta-protein fibrillogenesis - Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372CrossRefGoogle Scholar
  30. 30.
    Querfurth HW, LaFerla FM (2010) Mechanisms of disease: Alzheimer’s disease. New Engl J Med 362:329–344CrossRefGoogle Scholar
  31. 31.
    Jarrett JT, Berger EP, Lansbury PT (1993) The c-terminus of the beta-protein is critical in amyloidogenesis. In: Nitsch RM, Growdon JH, Corkin S, Wurtman RJ (eds) Alzheimers Disease: Amyloid Precusor Proteins, Signal Transduction, and Neuronal Transplantation. New York Academy of Sciences, New YorkGoogle Scholar
  32. 32.
    Dickson DW, Lee SC, Mattiace LA, Yen SHC, Brosnan C (1993) Microglia and cytokines in neurological disease with special reference to aids and Alzheimer’s disease. Glia 7:75–83CrossRefGoogle Scholar
  33. 33.
    Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglia cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650CrossRefGoogle Scholar
  34. 34.
    Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62:218–229CrossRefGoogle Scholar
  35. 35.
    Parkinson J (2002) An essay on the shaking palsy. J Neuropsych Clin N 14:223–236CrossRefGoogle Scholar
  36. 36.
    Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein - A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815Google Scholar
  37. 37.
    Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM (2010) Synergistic interactions between a beta, tau, and alpha-synuclein: Acceleration of neuropathology and cognitive decline. J Neurosci 30:7281–7289CrossRefGoogle Scholar
  38. 38.
    Duka T, Rusnak M, Drolet RE, Duka V, Wersinger C, Goudreau JL, Sidhu A (2006) Alpha-synuclein induces hyperphosphorylation of tau in the MPTP model of Parkinsonism. FASEB J 20:2302–2312CrossRefGoogle Scholar
  39. 39.
    Badiola N, de Oliveira RM, Herrera F, Guardia-Laguarta C, Goncalves SA, Pera M, Suarez-Calvet M, Clarimon J, Outeiro TF, Lleo A (2011) Tau enhances alpha-synuclein aggregation and toxicity in cellular models of synucleinopathy. PLoS One. doi:10.1371/journal.pone.0026609 Google Scholar
  40. 40.
    Jellinger KA (2011) Interaction between alpha-synuclein and other proteins in neurodegenerative disorders. Scientific World Journal 11:1893–1907CrossRefGoogle Scholar
  41. 41.
    Paulson HL, Bonini NM, Roth KA (2000) Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci USA 97:12957–12958CrossRefGoogle Scholar
  42. 42.
    Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 97:6763–6768CrossRefGoogle Scholar
  43. 43.
    Difiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel JP, Carraway R, Reeves SA, Boyce FM, Aronin N (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat-brain neurons. Neuron 14:1075–1081CrossRefGoogle Scholar
  44. 44.
    Gusella JF, Macdonald ME (1995) Huntington’s disease. Semin Cell Biol 6:21–28CrossRefGoogle Scholar
  45. 45.
    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548CrossRefGoogle Scholar
  46. 46.
    Atarashi R, Moore RA, Sim VL, Hughson AG, Dorward DW, Onwubiko HA, Priola SA, Caughey B (2007) Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods 4:645–650CrossRefGoogle Scholar
  47. 47.
    Soto C, Castilla J (2004) The controversial protein-only hypothesis of prion propagation. Nat Med 10:S63–S67CrossRefGoogle Scholar
  48. 48.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144CrossRefGoogle Scholar
  49. 49.
    Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261CrossRefGoogle Scholar
  50. 50.
    Pauly PC, Harris DA (1998) Copper stimulates endocytosis of the prion protein. J Biol Chem 273:33107–33110CrossRefGoogle Scholar
  51. 51.
    Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65:184–189CrossRefGoogle Scholar
  52. 52.
    Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of prion propagation: Amyloid growth occurs by monomer addition. PLoS Biol 2:1582–1590CrossRefGoogle Scholar
  53. 53.
    Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326:1533–1537CrossRefGoogle Scholar
  54. 54.
    Xue WF, Homans SW, Radford SE (2008) Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci USA 105:8926–8931CrossRefGoogle Scholar
  55. 55.
    Sukhanova A, Poly S, Shemetov A, Bronstein I, Nabiev I (2012) Implications of protein structure instability: From physiological to pathological secondary structure. Biopolymers 97:577–588CrossRefGoogle Scholar
  56. 56.
    Ferrone F (1999) Analysis of protein aggregation kinetics. Amyloid, Prions, and Other Protein Aggregates 309:256–274CrossRefGoogle Scholar
  57. 57.
    Sabate R, Gallardo M, Estelrich J (2003) An autocatalytic reaction, as a model for the kinetics of the aggregation of beta-amyloid. Biopolymers 71:190–195CrossRefGoogle Scholar
  58. 58.
    Muench C, Bertolotti A (2012) Propagation of the prion phenomenon: Beyond the seeding principle. J Mol Biol 421:491–498CrossRefGoogle Scholar
  59. 59.
    Harper JD, Lieber CM, Lansbury PT (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem Biol 4:951–959CrossRefGoogle Scholar
  60. 60.
    Jimenez JL, Guijarro JL, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18:815–821CrossRefGoogle Scholar
  61. 61.
    Bhak G, Choe YJ, Paik SR (2009) Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation. BMB Reports 42:541–551CrossRefGoogle Scholar
  62. 62.
    Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 335:247–260CrossRefGoogle Scholar
  63. 63.
    Schmechel A, Zentgraf H, Scheuermann S, Fritz G, Pipkorn RD, Reed J, Beyreuther K, Bayer TA, Multhaup G (2003) Alzheimer beta-amyloid homodimers facilitate a beta fibrillization and the generation of conformational antibodies. J Biol Chem 278:35317–35324CrossRefGoogle Scholar
  64. 64.
    Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457CrossRefGoogle Scholar
  65. 65.
    Uversky VN (2010) Mysterious oligomerization of the amyloidogenic proteins. FEBS J 277:2940–2953CrossRefGoogle Scholar
  66. 66.
    Breydo L, Uversky VN (2011) Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics 3:1163–1180CrossRefGoogle Scholar
  67. 67.
    Tougu V, Tiiman A, Palumaa P (2011) Interactions of Zn(II) and Cu(II) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 3:250–261CrossRefGoogle Scholar
  68. 68.
    Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990CrossRefGoogle Scholar
  69. 69.
    Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 155:30–37CrossRefGoogle Scholar
  70. 70.
    Rajendran R, Ren M, Dolores Ynsa M, Casadesus G, Smith MA, Perry G, Halliwell B, Watt F (2009) A novel approach to the identification and quantitative elemental analysis of amyloid deposits-Insights into the pathology of Alzheimer’s disease. Biochem Biophys Res Commun 382:91–95CrossRefGoogle Scholar
  71. 71.
    Jiang D, Zhang L, Grant GPG, Dudzik CG, Chen S, Patel S, Hao Y, Millhauser GL, Zhou F (2013) The elevated copper binding strength of amyloid-beta aggregates allows the sequestration of copper from albumin: A pathway to accumulation of copper in senile plaques. Biochemistry 52:547–556CrossRefGoogle Scholar
  72. 72.
    Sarell CJ, Syme CD, Rigby SEJ, Viles JH (2009) Copper(II) Binding to Amyloid-beta Fibrils of Alzheimer’s Disease Reveals a Picomolar Affinity: Stoichiometry and Coordination Geometry Are Independent of A beta Oligomeric Form. Biochemistry 48:4388–4402CrossRefGoogle Scholar
  73. 73.
    Bush AI, Tanzi RE (2008) Therapeutics for Alzheimer’s disease based on the Metal Hypothesis. Neurotherapeutics 5:421–432CrossRefGoogle Scholar
  74. 74.
    Crouch PJ, White AR, Bush AI (2007) The modulation of metal bio-availability as a therapeutic strategy for the treatment of Alzheimer’s disease. FEBS J 274:3775–3783CrossRefGoogle Scholar
  75. 75.
    Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F (2007) Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathalogical relevance. Biochemistry 46:9270–9282CrossRefGoogle Scholar
  76. 76.
    Raffa DF, Rickard GA, Rauk A (2007) Ab initio modelling of the structure and redox behaviour of copper(I) bound to a His-His model peptide: relevance to the beta-amyloid peptide of Alzheimer’s disease. J Biol Inorg Chem 12:147–164CrossRefGoogle Scholar
  77. 77.
    Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300CrossRefGoogle Scholar
  78. 78.
    Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366CrossRefGoogle Scholar
  79. 79.
    Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113CrossRefGoogle Scholar
  80. 80.
    Vilasi S, Sarcina R, Maritato R, De Simone A, Irace G, Sirangelo I (2011) Heparin induces harmless fibril formation in amyloidogenic W7FW14F apomyoglobin and amyloid aggregation in wild-type protein in vitro. PloS One. doi:10.1371/journal.pone.0022076 Google Scholar
  81. 81.
    Millet P, Lages CS, Haik S, Nowak E, Allemand I, Granotier C, Boussin FD (2005) Amyloid-beta peptide triggers FAS-independent apoptosis and differentiation of neural progenitor cells. Neurobiol Dis 19:57–65CrossRefGoogle Scholar
  82. 82.
    Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100CrossRefGoogle Scholar
  83. 83.
    Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in Neuroplasticity and Neurological Disorders. Neuron 60:748–766CrossRefGoogle Scholar
  84. 84.
    Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 106:14670–14675CrossRefGoogle Scholar
  85. 85.
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934CrossRefGoogle Scholar
  86. 86.
    Arispe N (2004) Architecture of the Alzheimer’s a beta p ion channel pore. J Membr Biol 197:33–48CrossRefGoogle Scholar
  87. 87.
    Arispe N, Diaz JC, Simakova O (2007) A beta ion channels. Prospects for treating Alzheimer’s disease with a beta channel blockers. Biochim Biophys Acta 1768:1952–1965CrossRefGoogle Scholar
  88. 88.
    Kagan BL, Azimov R, Azimova R (2004) Amyloid peptide channels. J Membr Biol 202:1–10CrossRefGoogle Scholar
  89. 89.
    Bartolini M, Naldi M, Fiori J, Valle F, Biscarini F, Nicolau DV, Andrisano V (2011) Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethodological approach. Anal Biochem 414:215–225CrossRefGoogle Scholar
  90. 90.
    Rahimi F, Shanmugam A, Bitan G (2008) Structure–function relationships of pre-fibrillar protein assemblies in Alzheimer’s disease and related disorders. Curr Alzheimer Res 5:319–341CrossRefGoogle Scholar
  91. 91.
    Gregoire S, Irwin J, Kwon I (2012) Techniques for monitoring protein misfolding and aggregation in vitro and in living cells. Korean J Chem Eng 29:693–702CrossRefGoogle Scholar
  92. 92.
    Bulheller BM, Rodger A, Hirst JD (2007) Circular and linear dichroism of proteins. Physica A 9:2020–2035Google Scholar
  93. 93.
    Schweitzer-Stenner R, Measey T, Kakalis L, Jordan F, Pizzanelli S, Forte C, Griebenow K (2007) Conformations of alanine-based peptides in water probed by FTIR, Raman, vibrational circular dichroism, electronic circular dichroism, and NMR spectroscopy. Biochemistry 46:1587–1596CrossRefGoogle Scholar
  94. 94.
    Woody RW (2009) Circular Dichroism Spectrum of Peptides in the Poly(Pro)II Conformation. J Am Chem Soc 131:8234–8245CrossRefGoogle Scholar
  95. 95.
    Nakanishi K, Berova N, Woody RW (1995) Circular dichroism, principles and applications. Wiley VCH, CambridgeGoogle Scholar
  96. 96.
    Johnson WC (1985) Circular-dichroism and its empirical application to bio-polymers. Methods Biochem Anal 31:61–163CrossRefGoogle Scholar
  97. 97.
    Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890CrossRefGoogle Scholar
  98. 98.
    Boren K, Andersson P, Larsson M, Carlsson U (1999) Characterization of a molten globule state of bovine carbonic anhydrase - III: Loss of asymmetrical environment of the aromatic residues has a profound effect on both the near- and far-UV CD spectrum. BBA-Protein Struct M 1430:111–118CrossRefGoogle Scholar
  99. 99.
    Wallace BA, Janes RW (2001) Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Curr Opin Chem Biol 5:567–571CrossRefGoogle Scholar
  100. 100.
    Seibt J, Dehm V, Wuerthner F, Engel V (2008) Circular dichroism spectroscopy of small molecular aggregates: Dynamical features and size effects. J Chem Phys 128:204303CrossRefGoogle Scholar
  101. 101.
    Mandal PK, Pettegrew JW (2004) Alzheimer’s disease: Soluble oligomeric A beta(1-40) peptide in membrane mimic environment from solution NMR and circular dichroism studies. Neurochem Res 29:2267–2272CrossRefGoogle Scholar
  102. 102.
    Bartolini M, Bertucci C, Bolognesi ML, Cavalli A, Melchiorre C, Andrisano V (2007) Insight into the kinetic of amyloid beta(1-42) peptide self-aggregation: Elucidation of inhibitors’ mechanism of action. Chembiochem 8:2152–2161CrossRefGoogle Scholar
  103. 103.
    Cao P, Meng F, Abedini A, Raleigh DP (2010) The ability of rodent islet amyloid polypeptide to inhibit amyloid formation by human islet amyloid polypeptide has important implications for the mechanism of amyloid formation and the design of inhibitors. Biochemistry 49:872–881CrossRefGoogle Scholar
  104. 104.
    Bertucci C, Pistolozzi M, De Simone A (2010) Circular dichroism in drug discovery and development: an abridged review. Anal Bioanal Chem 398:155–166CrossRefGoogle Scholar
  105. 105.
    Adochitei A, Drochioiu G (2011) Rapid characterization of peptide secondary structure by FT-IR spectroscopy. Rev Roum Chim 56:783–791Google Scholar
  106. 106.
    Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487CrossRefGoogle Scholar
  107. 107.
    DeFlores LP, Ganim Z, Nicodemus RA, Tokmakoff A (2009) Amide I ‘-II’ 2D IR spectroscopy provides enhanced protein secondary structural sensitivity. J Am Chem Soc 131:3385–3391CrossRefGoogle Scholar
  108. 108.
    Emmambux MN, Taylor JRN (2009) Properties of heat-treated sorghum and maize meal and their prolamin proteins. J Agric Food Chem 57:1045–1050CrossRefGoogle Scholar
  109. 109.
    Jung C (2000) Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. J Mol Recognit 13:325–351CrossRefGoogle Scholar
  110. 110.
    Choi YY, Jang JH, Park MH, Choi BG, Chi B, Jeong B (2010) Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(L-alanine) block copolymers. J Mater Chem 20:3416–3421CrossRefGoogle Scholar
  111. 111.
    Markossian KA, Yudin IK, Kurganov BI (2009) Mechanism of suppression of protein aggregation by alpha-crystallin. Int J Mol Sci 10:1314–1345CrossRefGoogle Scholar
  112. 112.
    Pryor NE, Moss MA, Hestekin CN (2012) Unraveling the early events of amyloid-beta protein (a beta) aggregation: Techniques for the determination of a beta aggregate size. Int J Mol Sci 13:3038–3072CrossRefGoogle Scholar
  113. 113.
    Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499CrossRefGoogle Scholar
  114. 114.
    Maezawa I, Hong HS, Liu R, Wu CY, Cheng RH, Kung MP, Kung HF, Lam KS, Oddo S, LaFerla FM, Jin LW (2008) Congo red and thioflavin-T analogs detect A beta oligomers. J Neurochem 104:457–468Google Scholar
  115. 115.
    Biancalana M, Koide S (2010) Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804:1405–1412CrossRefGoogle Scholar
  116. 116.
    Biancalana M, Makabe K, Koide A, Koide S (2009) Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol 385:1052–1063CrossRefGoogle Scholar
  117. 117.
    Wolfe LS, Calabrese MF, Nath A, Blaho DV, Miranker AD, Xiong Y (2010) Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc Natl Acad Sci USA 107:16863–16868CrossRefGoogle Scholar
  118. 118.
    Groenning M (2010) Binding mode of thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J Chem Biol 3:1–18CrossRefGoogle Scholar
  119. 119.
    Stsiapura VI, Maskevich AA, Kuzmitsky VA, Turoverov KK, Kuznetsova IM (2007) Computational study of thioflavin T torsional relaxation in the excited state. J Phys Chem A 111:4829–4835CrossRefGoogle Scholar
  120. 120.
    LeVine H (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284CrossRefGoogle Scholar
  121. 121.
    Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160CrossRefGoogle Scholar
  122. 122.
    Klunk WE, Pettegrew JW, Abraham DJ (1989) Quantitative evaluation of Congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem 37:1273–1281CrossRefGoogle Scholar
  123. 123.
    Klunk WE, Pettegrew JW, Abraham DJ (1989) 2 simple methods for quantifying low-affinity dye substrate binding. J Histochem Cytochem 37:1293–1297CrossRefGoogle Scholar
  124. 124.
    Elhaddaoui A, Pigorsch E, Delacourte A, Turrell S (1995) Competition of Congo red and thioflavin S binding to amyloid sites in Alzheimer’s diseased tissue. Biospectroscopy 1:351–356CrossRefGoogle Scholar
  125. 125.
    Elhaddaoui A, Pigorsch E, Delacourte A, Turrell S (1995) Spectroscopic investigations of synthetic beta-amyloid peptides of Alzheimers disease. J Mol Struct 347:363–369CrossRefGoogle Scholar
  126. 126.
    Seki T, Takahashi H, Yamamoto K, Ogawa K, Onji T, Adachi N, Tanaka S, Hide I, Saito N, Sakai N (2010) Congo Red, an amyloid-inhibiting compound, alleviates various types of cellular dysfunction triggered by mutant protein kinase C gamma that causes spinocerebellar Ataxia Type 14 (SCA14) by inhibiting oligomerization and aggregation. J Pharmacol Sci 114:206–216CrossRefGoogle Scholar
  127. 127.
    Lendel C, Bolognesi B, Wahlstrom A, Dobson CM, Graslund A (2010) Detergent-like interaction of Congo red with the amyloid beta peptide. Biochemistry 49:1358–1360CrossRefGoogle Scholar
  128. 128.
    Yanamandra K, Alexeyev O, Zamotin V, Srivastava V, Shchukarev A, Brorsson AC, Tartaglia GG, Vogl T, Kayed R, Wingsle G, Olsson J, Dobson CM, Bergh A, Elgh F, Morozova-Roche LA (2009) Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. PloS One. doi:10.1371/journal.pone.0005562 Google Scholar
  129. 129.
    Wong HE, Qi W, Choi HM, Fernandez EJ, Kwon I (2011) A safe, blood–brain barrier permeable triphenylmethane dye inhibits amyloid-beta neurotoxicity by generating nontoxic aggregates. ACS Chem Neurosci 2:645–657CrossRefGoogle Scholar
  130. 130.
    Harris JR (2002) In vitro fibrillogenesis of the amyloid beta(1-42) peptide: cholesterol potentiation and aspirin inhibition. Micron 33:609–626CrossRefGoogle Scholar
  131. 131.
    Rocha S, Thueneman AF, MdC P, Coelho M, Moehwald H, Brezesinski G (2008) Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem 137:35–42CrossRefGoogle Scholar
  132. 132.
    Krysmann MJ, Castelletto V, Kelarakis A, Hamley IW, Hule RA, Pochan DJ (2008) Self-assembly and hydrogelation of an amyloid peptide fragment. Biochemistry 47:4597–4605CrossRefGoogle Scholar
  133. 133.
    Sen A, Baxa U, Simon MN, Wall JS, Sabate R, Saupe SJ, Steven AC (2007) Mass analysis by scanning transmission electron microscopy and electron diffraction validate predictions of stacked beta-solenoid model of HET-s prion fibrils. J Biol Chem 282:5545–5550CrossRefGoogle Scholar
  134. 134.
    Sachse C, Fändrich M, Grigorieff N (2008) Paired β-sheet structure of an Aβ(1-40) amyloid fibril revealed by electron microscopy. Proc Natl Acad Sci USA 105:7462–7466CrossRefGoogle Scholar
  135. 135.
    Chen B, Thurber KR, Shewmaker F, Wickner RB, Tycko R (2009) Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc Natl Acad Sci USA 106:14339–14344CrossRefGoogle Scholar
  136. 136.
    Dong M, Hovgaard MB, Mamdouh W, Xu S, Otzen DE, Besenbacher F (2008) AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon. Nanotechnology. doi:10.1088/0957-4484/19/38/384013 Google Scholar
  137. 137.
    Yang J, Tamm LK, Somlyo AP, Shao Z (1993) Promises and problems of biological atomic-force microscopy. J Microsc Oxford 171:183–198CrossRefGoogle Scholar
  138. 138.
    Blackley HKL, Sanders GHW, Davies MC, Roberts CJ, Tendler SJB, Wilkinson MJ (2000) In-situ atomic force microscopy study of beta-amyloid fibrillization. J Mol Biol 298:833–840CrossRefGoogle Scholar
  139. 139.
    McPherson A, Malkin AJ, Kuznetsov YG (2000) Atomic force microscopy in the study of macromolecular crystal growth. Annu Rev Biophys Biomol Struct 29:361–410CrossRefGoogle Scholar
  140. 140.
    Tatford OC, Gomme PT, Bertolini J (2004) Analytical techniques for the evaluation of liquid protein therapeutics. Biotechnol Appl Biochem 40:67–81CrossRefGoogle Scholar
  141. 141.
    Palecek E, Ostatna V, Masarik M, Bertoncini CW, Jovin TM (2008) Changes in interfacial properties of alpha-synuclein preceding its aggregation. Analyst 133:76–84CrossRefGoogle Scholar
  142. 142.
    Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128:9893–9901CrossRefGoogle Scholar
  143. 143.
    Lee J, Culyba EK, Powers ET, Kelly JW (2011) Amyloid-beta forms fibrils by nucleated conformational conversion of oligomers. Nature Chemical Biology 7:602–609CrossRefGoogle Scholar
  144. 144.
    Sandberg A, Luheshi LM, Sollvander S, de Barros TP, Macao B, Knowles TPJ, Biverstal H, Lendel C, Ekholm-Petterson F, Dubnovitsky A, Lannfelt L, Dobson CM, Hard T (2010) Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc Natl Acad Sci USA 107:15595–15600CrossRefGoogle Scholar
  145. 145.
    Borsarelli CD, Falomir-Lockhart LJ, Ostatna V, Fauerbach JA, Hsiao HH, Urlaub H, Palecek E, Jares-Erijman EA, Jovin TM (2012) Biophysical properties and cellular toxicity of covalent crosslinked oligomers of alpha-synuclein formed by photoinduced side-chain tyrosyl radicals. Free Radical Biol Med 53:1004–1015CrossRefGoogle Scholar
  146. 146.
    Cai XH, Rivas G, Farias PAM, Shiraishi H, Wang J, Palecek E (1996) Potentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrations. Anal Chim Acta 332:49–57CrossRefGoogle Scholar
  147. 147.
    Masarik M, Stobiecka A, Kizek R, Jelen F, Pechan Z, Hoyer W, Jovin TM, Subramaniam V, Palecek E (2004) Sensitive electrochemical detection of native and aggregated alpha-synuclein protein involved in Parkinson’s disease. Electroanalysis 16:1172–1181CrossRefGoogle Scholar
  148. 148.
    Ostatna V, Cernocka H, Kurzatkowska K, Palecek E (2012) Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes. Anal Chim Acta 735:31–36CrossRefGoogle Scholar
  149. 149.
    Palecek E, Jelen F, Teijeiro C, Fucik V, Jovin TM (1993) Biopolymer-modified electrodes in the voltammetric determination of nucleic acids and proteins at the submicrogram level. Anal Chim Acta 273:175–186CrossRefGoogle Scholar
  150. 150.
    Svarovsky MJ, Palecek SP (2005) Disruption of LRGI inhibits mother-daughter separation in Saccharomyces cerevisiae. Yeast 22:1117–1132CrossRefGoogle Scholar
  151. 151.
    Wang HY, Ying YL, Li Y, Kraatz HB, Long Y-T (2011) Nanopore analysis of beta-amyloid peptide aggregation transition induced by small molecules. Anal Chem 83:1746–1752CrossRefGoogle Scholar
  152. 152.
    Chan T, Chow AM, Cheng XR, Tang DWF, Brown IR, Kerman K (2012) Oxidative stress effect of dopamine on α-synuclein: Electroanalysis of solvent interactions. ACS Chem Neurosci 3:569–574CrossRefGoogle Scholar
  153. 153.
    Chan T, Chow AM, Tang DWF, Li Q, Wang X, Brown IR, Kerman K (2010) Interaction of baicalein and copper with alpha-synuclein: Electrochemical approach to Parkinson’s disease. J Electroanal Chem 648:151–155CrossRefGoogle Scholar
  154. 154.
    Chikae M, Fukuda T, Kerman K, Idegami K, Miura Y, Tamiya E (2008) Amyloid-beta detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry 74:118–123CrossRefGoogle Scholar
  155. 155.
    Hung VWS, Masoom H, Kerman K (2012) Label-free electrochemical detection of amyloid beta aggregation in the presence of iron, copper and zinc. J Electroanal Chem 681:89–95CrossRefGoogle Scholar
  156. 156.
    Veloso AJ, Chan T, Hung VWS, Lam L, Kerman K (2011) Insight into amyloid formation using Congo red as the electrochemical probe. Electroanalysis 23:2753–2756CrossRefGoogle Scholar
  157. 157.
    Veloso AJ, Dhar D, Chow AM, Zhang B, Tang DWF, Ganesh HVS, Mikhaylichenko S, Brown IR, Kerman K (2012) Sym-triazines for directed multi-target modulation of cholinesterases and amyloid-beta in Alzheimer’s disease. ACS Chem NeurosciGoogle Scholar
  158. 158.
    Veloso AJ, Hung VWS, Sindhu G, Constantinof A, Kerman K (2009) Electrochemical oxidation of benzothiazole dyes for monitoring amyloid formation related to Alzheimer’s disease. Anal Chem 81:9410–9415CrossRefGoogle Scholar
  159. 159.
    Veloso AJ, Kerman K (2012) Modulation of fibril formation by a beta-sheet breaker peptide ligand: An electrochemical approach. Bioelectrochemistry 84:49–52CrossRefGoogle Scholar
  160. 160.
    Vestergaard M, Kerman K (2009) Analytical Tools for Detecting Amyloid Beta Oligomerisation and Assembly. Curr Pharm Anal 5:229–245CrossRefGoogle Scholar
  161. 161.
    Vestergaard M, Kerman K, Saito M, Nagatani N, Takamura Y, Tamiya E (2005) A rapid label-free electrochemical detection and kinetic study of Alzheimer’s amyloid beta aggregation. J Am Chem Soc 127:11892–11893CrossRefGoogle Scholar
  162. 162.
    de la Fuente E, Adura C, Kogan MJ, Bollo S (2012) Carbon nanotubes electrochemistry allows the in situ evaluation of the effect of beta-sheet breakers on the aggregation process of ss-amyloid. Electroanalysis 24:938–944CrossRefGoogle Scholar
  163. 163.
    Protopapa E, Maude S, Aggeli A, Nelson A (2009) Interaction of self-assembling beta-sheet peptides with phospholipid monolayers: The role of aggregation state, polarity, charge and applied field. Langmuir 25:3289–3296CrossRefGoogle Scholar
  164. 164.
    Grabowska I, Radecka H, Burza A, Radecki J, Kaliszan M, Kaliszan R (2010) Association constants of pyridine and piperidine alkaloids to amyloid beta peptide determined by electrochemical impedance spectroscopy. Curr Alzheimer Res 7:165–172CrossRefGoogle Scholar
  165. 165.
    Wang J (2006) Controlled-potential techniques. In: Analytical electrochemistry. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  166. 166.
    Takata M, Kerman K, Nagatani N, Konaka H, Namiki M, Tamiya E (2006) Label-free bioelectronic immunoassay for the detection of human telomerase reverse transcriptase in urine. J Electroanal Chem 596:109–116CrossRefGoogle Scholar
  167. 167.
    Kerman K, Morita Y, Takamura Y, Tamiya E (2005) Escherichia coli single-strand binding protein-DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor. Anal Bioanal Chem 381:1114–1121CrossRefGoogle Scholar
  168. 168.
    Kerman K, Nagatani N, Chikae M, Yuhi T, Takamura Y, Tamiya E (2006) Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Anal Chem 78:5612–5616CrossRefGoogle Scholar
  169. 169.
    Havran L, Billova S, Palecek E (2004) Electroactivity of avidin and streptavidin. Avidin signals at mercury and carbon electrodes respond to biotin binding. Electroanalysis 16:1139–1148CrossRefGoogle Scholar
  170. 170.
    Brabec V (1980) Electrochemical oxidation of nucleic-acids and proteins at graphite electrode - Qualitative aspects. Bioelectrochem Bioenerg 7:69–82CrossRefGoogle Scholar
  171. 171.
    Brabec V, Schindlerová I (1981) Electrochemical behaviour of proteins at graphite electrodes: Part III. The effect of protein adsorption. Bioelectrochem Bioenerg 8:451–458CrossRefGoogle Scholar
  172. 172.
    Reynaud JA, Malfoy B, Bere A (1980) The electrochemical oxidation of 3 proteins - RNAase-A, bovine serum-albumin and concanavalin-A at solid electrodes. Bioelectrochem Bioenerg 7:595–606CrossRefGoogle Scholar
  173. 173.
    Reynolds NC, Kissela BM, Fleming LH (1995) The voltammetry of neuropeptides containing L-tyrosine. Electroanalysis 7:1177–1181CrossRefGoogle Scholar
  174. 174.
    Enache TA, Oliveira-Brett AM (2011) Phenol and para-substituted phenols electrochemical oxidation pathways. J Electroanal Chem 655:9–16CrossRefGoogle Scholar
  175. 175.
    Costanzo F, Sulpizi M, Della Valle RG, Sprik M (2011) The oxidation of tyrosine and tryptophan studied by a molecular dynamics normal hydrogen electrode. J Chem Phys 134Google Scholar
  176. 176.
    Enache TA, Oliveira-Brett AM (2011) Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine. Bioelectrochemistry 81:46–52CrossRefGoogle Scholar
  177. 177.
    Zhou WB, Freed CR (2004) Tyrosine-to-cysteine modification of human alpha-synuclein enhances protein aggregation and cellular toxicity. J Biol Chem 279:10128–10135CrossRefGoogle Scholar
  178. 178.
    Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17:561–U556CrossRefGoogle Scholar
  179. 179.
    Geng J, Yu H, Ren J, Qu X (2008) Rapid label-free detection of metal-induced Alzheimer’s amyloid beta peptide aggregation by electrochemical method. Electrochem Commun 10:1797–1800CrossRefGoogle Scholar
  180. 180.
    Prabhulkar S, Piatyszek R, Cirrito JR, Wu ZZ, Li CZ (2012) Microbiosensor for Alzheimer’s disease diagnostics: detection of amyloid beta biomarkers. J Neurochem 122:374–381CrossRefGoogle Scholar
  181. 181.
    Palecek E, Scheller F, Wang J (2006) Electrochemistry of Nucleic Acids and Proteins: Towards Electrochemical Sensors for Genomics and Proteomics. Elsevier Science,Google Scholar
  182. 182.
    Mairanovskii S (1968) Catalytic and kinetic waves in polarography. Plenum Press, New YorkGoogle Scholar
  183. 183.
    Tomschik M, Havran L, Fojta M, Palecek E (1998) Constant current chronopotentiometric stripping analysis of bioactive peptides at mercury and carbon electrodes. Electroanalysis 10:403–409CrossRefGoogle Scholar
  184. 184.
    Honeychurch MJ, Ridd MJ (1996) Derivative chronopotentiometric stripping analysis of insulin. Electroanalysis 8:49–54CrossRefGoogle Scholar
  185. 185.
    Huska D, Adam V, Zitka O, Kukacka J, Prusa R, Kizek R (2009) Chronopotentiometric stripping analysis of gelatinase B, collagen and their interaction. Electroanalysis 21:536–541CrossRefGoogle Scholar
  186. 186.
    Kizek R, Trnkova L, Palecek E (2001) Determination of metallothionein at the femtomole level by constant current stripping chronopotentiometry. Anal Chem 73:4801–4807CrossRefGoogle Scholar
  187. 187.
    Tomschik M, Havran L, Palecek E, Heyrovsky M (2000) The “presodium” catalysis of electroreduction of hydrogen ions on mercury electrodes by metallothionein. An investigation by constant current derivative stripping chronopotentiometry. Electroanalysis 12:274–279CrossRefGoogle Scholar
  188. 188.
    Ostatna V, Cernocka H, Palecek E (2010) Protein structure-sensitive electrocatalysis at dithiothreitol-modified electrodes. J Am Chem Soc 132:9408–9413CrossRefGoogle Scholar
  189. 189.
    Palecek E, Ostatna V (2009) Potential-dependent surface denaturation of BSA in acid media. Analyst 134:2076–2080CrossRefGoogle Scholar
  190. 190.
    Palecek E, Ostatna V (2009) Ionic strength-dependent structural transition of proteins at electrode surfaces. Chem Commun 1685–1687Google Scholar
  191. 191.
    Juskova P, Ostatna V, Palecek E, Foret F (2010) Fabrication and characterization of solid mercury amalgam electrodes for protein analysis. Anal Chem 82:2690–2695CrossRefGoogle Scholar
  192. 192.
    Veloso AJ, Hung VWS, Cheng XR, Kerman K (2012) Electroanalysis of amyloid-β aggregation kinetics using sym-triazine β-sheet inhibitors. Electroanalysis 24:1847–1851CrossRefGoogle Scholar
  193. 193.
    Summerlot D, Kumar A, Das S, Goldstein L, Seal S, Diaz D, Cho HJ (2011) Nanoporous Gold Electrode for Electrochemical Sensors in Biological Environment. In: Kaltsas G, Tsamis C (eds) Eurosensors Xxv. Elsevier, AmsterdamGoogle Scholar
  194. 194.
    Feitelso J (1969) Environmental effects on fluorescence of tyrosine and its homologues. Photochem Photobiol 9:401–410CrossRefGoogle Scholar
  195. 195.
    Guzow K, Szabelski M, Rzeska A, Karolczak J, Sulowska H, Wiczk W (2002) Photophysical properties of tyrosine at low pH range. Chem Phys Lett 362:519–526CrossRefGoogle Scholar
  196. 196.
    Zhang L, Yagnik G, Peng Y, Wang J, Xu HH, Hao Y, Liu Y-N, Zhou F (2013) Kinetic studies of inhibition of the amyloid beta (1-42) aggregation using a ferrocene-tagged beta-sheet breaker peptide. Anal Biochem 434:292–299CrossRefGoogle Scholar
  197. 197.
    Partovi-Nia R, Beheshti S, Qin Z, Mandal HS, Long Y-T, Girault HH, Kraatz H-B (2012) Study of amyloid beta-peptide (A beta 12-28-Cys) interactions with Congo red and beta-sheet breaker peptides using electrochemical impedance spectroscopy. Langmuir 28:6377–6385CrossRefGoogle Scholar
  198. 198.
    Protopapa E, Ringstad L, Aggeli A, Nelson A (2010) Interaction of self-assembling beta-sheet peptides with phospholipid monolayers: The effect of serine, threonine, glutamine and asparagine amino acid side chains. Electrochim Acta 55:3368–3375CrossRefGoogle Scholar
  199. 199.
    Krazinski BE, Radecki J, Radecka H (2011) Surface plasmon resonance based biosensors for exploring the influence of alkaloids on aggregation of amyloid-beta peptide. Sensors 11:4030–4042CrossRefGoogle Scholar
  200. 200.
    Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. John Wiley & Sons, Inc., HobokenCrossRefGoogle Scholar
  201. 201.
    K’Owino IO, Sadik OA (2005) Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17:2101–2113CrossRefGoogle Scholar
  202. 202.
    Lvovich VF (2012) Fundamentals of electrochemical impedance spectroscopy. In: Impedance Spectroscopy. John Wiley & Sons, Inc, New YorkGoogle Scholar
  203. 203.
    Szymanska I, Radecka H, Radecki J, Kaliszan R (2007) Electrochemical impedance spectroscopy for study of amyloid beta-peptide interactions with (−) nicotine ditartrate and (−) cotinine. Biosens Bioelectron 22:1955–1960CrossRefGoogle Scholar
  204. 204.
    Ishii J, Chikae M, Toyoshima M, Ukita Y, Miura Y, Takamura Y (2011) Electrochemical assay for saccharide–protein interactions using glycopolymer-modified gold nanoparticles. Electrochem Commun 13:830–833CrossRefGoogle Scholar
  205. 205.
    Zhao J, Gao T, Yan Y, Chen G, Li G (2013) Probing into the interaction of β-amyloid peptides with bilayer lipid membrane by electrochemical techniques. Electrochem Commun 30:26–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughScarboroughCanada
  2. 2.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations