Analytical and Bioanalytical Chemistry

, Volume 405, Issue 14, pp 4823–4834 | Cite as

Assaying the efficacy of dual-antiplatelet therapy: use of a controlled-shear-rate microfluidic device with a well-defined collagen surface to track dynamic platelet adhesion

  • Margaret B LucittEmail author
  • Sinead O’Brien
  • Jonathan Cowman
  • Gerardene Meade
  • Lourdes Basabe-Desmonts
  • Martin Somers
  • Nigel Kent
  • Antonio J. Ricco
  • Dermot Kenny
Research Paper


We report the development and demonstration of an assay that distinguishes the pharmacological effects of two widely used antiplatelet therapies, aspirin (COX-1 inhibitor) and clopidogrel (P2Y12 inhibitor). Whole blood is perfused through a low-volume microfluidic device in contact with a well-characterized (ellipsometry, atomic force microscopy) acid-soluble type I collagen surface. Whole human blood treated in vitro with a P2Y12 inhibitor 2-methylthioadenosine 5′-monophosphate triethylammonium salt (2-MeSAMP) extended the time to the start of platelet recruitment, i.e., platelet binding to the collagen surface. Treatment with 2-MeSAMP also slowed the rate of aggregate buildup, with an overall reduced average platelet aggregate area after 8 min of constant blood flow. A far smaller effect was observed for in vitro treatment with aspirin, for which the rate of change of surface coverage is indistinguishable from controls. In whole blood obtained from patients under treatment with dual-antiplatelet therapy (aspirin and clopidogrel), a significant extension of time to platelet recruitment was observed along with a slowed rate of aggregate buildup and an average aggregate size approximately half that of control measurements. Differentiation of the pharmacological effects of these two well-targeted antiplatelet pathways suggests a role for this assay in determining the antiplatelet effects of these and related new therapeutics in clinical settings.

Keywords Antiplatelet therapy Collagen–platelet interactions Microfluidics Parallel-plate flow chamber Thrombosis 



The authors gratefully acknowledge the help of Ms. Gail Plunkett who assisted with patient recruitment. This material is based upon research supported by Science Foundation Ireland under grant no. 05/CE3/B754.

Disclosure and conflict of interests

The authors declare no conflicts of interest.


  1. 1.
    Jackson SP (2011) Arterial thrombosis—insidious, unpredictable and deadly. Nat Med 17:1423–1436CrossRefGoogle Scholar
  2. 2.
    Falk E (1985) Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 71:699–708CrossRefGoogle Scholar
  3. 3.
    Ruggeri ZM, Mendolicchio GL (2007) Adhesion mechanisms in platelet function. Circ Res 100:1673–1685CrossRefGoogle Scholar
  4. 4.
    Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359:938–949CrossRefGoogle Scholar
  5. 5.
    Patrono C, Garcia Rodriguez LA, Landolfi R, Baigent C (2005) Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 353:2373–2383CrossRefGoogle Scholar
  6. 6.
    Patrono C (2009) The P2Y12 receptor: no active metabolite, no party. Nat Rev Cardiol 6:271–272CrossRefGoogle Scholar
  7. 7.
    Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R (2009) Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 373:1849–1860CrossRefGoogle Scholar
  8. 8.
    Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK (2001) Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 345:494–502CrossRefGoogle Scholar
  9. 9.
    Chen ZM, Jiang LX, Chen YP, Xie JX, Pan HC, Peto R, Collins R, Liu LS, COMMIT (ClOpidogrel and Metoprolol in Myocardial Infarction Trial) Collaborative Group (2005) Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 366:1607–1621CrossRefGoogle Scholar
  10. 10.
    Bhatt DL, Fox KA, Hacke W, Berger PB, Black HR, Boden WE et al (2006) Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med 354:1706–1717CrossRefGoogle Scholar
  11. 11.
    Freedman JE, Hylek EM (2009) Clopidogrel, genetics, and drug responsiveness. N Engl J Med 360:411–413CrossRefGoogle Scholar
  12. 12.
    Small DS, Farid NA, Payne CD, Weerakkody GJ, Li YG, Brandt JT, Salazar DE, Winters KJ (2008) Effects of the proton pump inhibitor lansoprazole on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. J Clin Pharmacol 48:475–484CrossRefGoogle Scholar
  13. 13.
    Kent NJ, Basabe-Desmonts L, Meade G, MacCraith BD, Corcoran BG, Kenny D, Ricco AJ (2010) Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces. Biomed Microdevices 12:987–1000CrossRefGoogle Scholar
  14. 14.
    Lincoln B, Ricco AJ, Kent NJ, Basabe-Desmonts L, Lee LP, MacCraith BD, Kenny D, Meade G (2010) Integrated system investigating shear-mediated platelet interactions with von Willebrand factor using microliters of whole blood. Anal Biochem 405:174–183CrossRefGoogle Scholar
  15. 15.
    O’Brien S, Kent N, Lucitt M, Ricco AJ, McAtamney C, Kenny D, Meade G (2012) Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: matching whole blood dynamic viscosity. IEEE Trans Biomed Eng 59:374–382Google Scholar
  16. 16.
    Zwaginga JJ, Nash G, King MR, Heemskerk JWM, Frojmovic M, Hoylaerts MF, Sakariassen KS (2006) Flow-based assays for global assessment of hemostasis. Part 1: Biorheologic considerations. J Thromb Haemost 4:2486–2487CrossRefGoogle Scholar
  17. 17.
    Zwaginga JJ, Sakariassen KS, Nash G, King MR, Heemskerk JW, Frojmovic M, Hoylaerts MF (2006) Flow-based assays for global assessment of hemostasis. Part 2: Current methods and considerations for the future. J Thromb Haemost 4:2716–2717CrossRefGoogle Scholar
  18. 18.
    Brass LF, Zhu L, Stalker TJ (2005) Minding the gaps to promote thrombus growth and stability. J Clin Invest 115:3385–3392CrossRefGoogle Scholar
  19. 19.
    Heemskerk JW, Sakariassen KS, Zwaginga JJ, Brass LF, Jackson SP, Farndale RW (2011) Collagen surfaces to measure thrombus formation under flow: possibilities for standardization. J Thromb Haemost 9:856–858CrossRefGoogle Scholar
  20. 20.
    Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  21. 21.
    Moran N, Kiernan A, Dunne E, Edwards RJ, Shields DC, Kenny D (2006) Monitoring modulators of platelet aggregation in a microtiter plate assay. Anal Biochem 357:77–84CrossRefGoogle Scholar
  22. 22.
    Toscano A, Santore MM (2006) Fibrinogen adsorption on three silica-based surfaces: conformation and kinetics. Langmuir 22:2588–2597CrossRefGoogle Scholar
  23. 23.
    Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958CrossRefGoogle Scholar
  24. 24.
    Mayne R (1988) Preparation and applications of monoclonal antibodies to different collagen types. Clin Biochem 21:111–115CrossRefGoogle Scholar
  25. 25.
    Munnix IC, Gilio K, Siljander PR, Raynal N, Feijge MAH, Hackeng TM et al (2008) Collagen-mimetic peptides mediate flow-dependent thrombus formation by high- or low-affinity binding of integrin alpha2beta1 and glycoprotein VI. J Thromb Haemost 6:2132–2142CrossRefGoogle Scholar
  26. 26.
    Hansen RR, Tipnis AA, White-Adams TC, Di Paola JA, Neeves KB (2011) Characterization of collagen thin films for von Willebrand factor binding and platelet adhesion. Langmuir 27:13648–13658CrossRefGoogle Scholar
  27. 27.
    Sakariassen KS, Hanson SR, Cadroy Y (2001) Methods and models to evaluate shear-dependent and surface reactivity-dependent antithrombotic efficacy. Thromb Res 104:149–174CrossRefGoogle Scholar
  28. 28.
    Mendelboum Raviv S, Szekeres-Csiki K, Jenei A, Nagy J, Shenkman B, Savion N, Harsfalvi J (2012) Coating conditions matter to collagen matrix formation regarding von Willebrand factor and platelet binding. Thromb Res 129:e29–e35CrossRefGoogle Scholar
  29. 29.
    Hosokawa K, Ohnishi T, Fukasawa M, Kondo T, Sameshima H, Koide T, Tanaka KA, Maruyama I (2012) A microchip flow-chamber system for quantitative assessment of the platelet thrombus formation process. Microvasc Res 83:154–161CrossRefGoogle Scholar
  30. 30.
    Mendolicchio GL, Zavalloni D, Bacci M, Corrada E, Marconi M, Lodigiani C, Presbitero P, Rota L, Ruggeri ZM (2011) Variable effect of P2Y12 inhibition on platelet thrombus volume in flowing blood. J Thromb Haemost 9:373–382CrossRefGoogle Scholar
  31. 31.
    Roald HE, Barstad RM, Kierulf P, Skjørten F, Dickinson JP, Kieffer G, Sakariassen KS (1994) Clopidogrel—a platelet inhibitor which inhibits thrombogenesis in non-anticoagulated human blood independently of the blood flow conditions. Thromb Haemost 71:655–662Google Scholar
  32. 32.
    Barstad RM, Orvim U, Hamers MJ, Tjonnfjord GE, Brosstad FR, Sakariassen KS (1996) Reduced effect of aspirin on thrombus formation at high shear and disturbed laminar blood flow. Thromb Haemost 75:827–832Google Scholar
  33. 33.
    Hosokawa K, Ohnishi T, Sameshima H, Miura N, Ito T, Koide T, Maruyama I (2007) Analysing responses to aspirin and clopidogrel by measuring platelet thrombus formation under arterial flow conditions. Thromb Haemost 98:1316–1322Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Margaret B Lucitt
    • 1
    • 4
    Email author
  • Sinead O’Brien
    • 1
  • Jonathan Cowman
    • 1
  • Gerardene Meade
    • 1
  • Lourdes Basabe-Desmonts
    • 2
    • 3
    • 5
  • Martin Somers
    • 2
  • Nigel Kent
    • 2
    • 6
  • Antonio J. Ricco
    • 2
  • Dermot Kenny
    • 1
    • 2
  1. 1.Biomedical Diagnostics InstituteRoyal College of Surgeons in IrelandDublin 2Ireland
  2. 2.Biomedical Diagnostics InstituteDublin City UniversityDublin 9Ireland
  3. 3.IKERBASQUEBasque Foundation for ScienceBilbaoSpain
  4. 4.Department of Pharmacology and TherapeuticsTrinity College DublinDublin 8Ireland
  5. 5.CIC microGUNEArrasate‐MondragonSpain
  6. 6.Dublin Institute of TechnologyDublin 6Ireland

Personalised recommendations