Analytical and Bioanalytical Chemistry

, Volume 405, Issue 14, pp 4849–4858 | Cite as

Method development and validation for rat serum fingerprinting with CE–MS: application to ventilator-induced-lung-injury study

  • Shama Naz
  • Antonia Garcia
  • Magdalena Rusak
  • Coral BarbasEmail author
Original Paper


In the search for a noninvasive and reliable rapid screening method to detect biomarkers, a metabolomics fingerprinting approach was developed and applied to rat serum samples using capillary electrophoresis coupled to an electrospray ionization-time of flight-mass spectrometer (CE–TOF-MS). An ultrafiltration method was used for sample pretreatment. To evaluate performance the method was validated with carnitine, choline, ornithine, alanine, acetylcarnitine, betaine, and citrulline, covering the entire electropherogram of pool of rat serum. The linearity for all metabolites was >0.99, with good recovery and precision. Approximately 34 compounds were also confirmed in the pool of rat serum. The method was successfully applied to real serum samples from rats with ventilator-induced lung injury, an experimental rat model for acute lung injury (ALI), giving a total of 1163 molecular features. By use of univariate and multivariate statistics 18 significant compounds were found, of which five were confirmed. The involvement of arginase and nitric oxide synthase has been proved for other lung diseases, meaning the increase of asymmetric dimethyl arginine (ADMA) and ornithine and the decrease of arginine found were in accordance with published literature. Ultimately this fingerprinting approach offers the possibility of identifying biomarkers that could be regularly screened for as part of routine disease control. In this way it might be possible to prevent the development of ALI in patients in critical care units.


A fingerprinting approach in serum using capillary electrophoresis and mass spectrometry

Open image in new window


Capillary electrophoresis Metabolomics Fingerprinting Serum Ventilator induced lung injury Asymmetric dimethyl arginine 



Shama Naz is receiving funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no-264864, and a research grant from Ministerio de Economia y Competitividad (MINECO, CTQ2011-23562). The authors thank Jesús Ruíz-Cabello, Andrés Esteban, and José Angel Lorente from the Getafe Hospital, Madrid, Spain, for the serum samples of VILI and control, Dr Marcela Erazo, for helping with the biological interpretation of choline, and Dr Emily G. Armitage, for checking the grammar throughout the manuscript.


  1. 1.
    Kaiser T, Wittke S, Just I, Krebs R, Bartel S, Fliser D, Mischak H, Weissinger EM (2004) Capillary electrophoresis coupled to mass spectrometer for automated and robust polypeptide determination in body fluids for clinical use. Electrophoresis 25:2044–2055CrossRefGoogle Scholar
  2. 2.
    Ramautar R, Busnel JM, Deelder AM, Mayboroda OA (2012) Enhancing the coverage of the urinary metabolome by sheathless capillary electrophoresis–mass spectrometry. Anal Chem 84(2):885–892CrossRefGoogle Scholar
  3. 3.
    Hirayama A, Nakashima E, Sugimoto M, Akiyama SI, Sato W, Maruyama S, Matsuo S, Tomita M, Yuzawa Y, Soga T (2012) Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal Bioanal Chem. doi: 10.1007/s00216-012-6412-x
  4. 4.
    Ibáñez C, Simó C, Martín-Álvarez PJ, Kivipelto M, Winblad B, Cedazo-Mínguez A, Cifuentes A (2012) Toward a predictive model of Alzheimer's disease progression using capillary electrophoresis–mass spectrometry metabolomics. Anal Chem 84(20):8532–8540CrossRefGoogle Scholar
  5. 5.
    Canuto GA, Castilho-Martins EA, Tavares M, López-Gonzálvez A, Rivas L, Barbas C (2012) CE–ESI-MS metabolic fingerprinting of Leishmania resistance to antimony treatment. Electrophoresis 33(12):1901–1910CrossRefGoogle Scholar
  6. 6.
    Celebier M, Ibáñez C, Simó C, Cifuentes A (2012) A Foodomics approach: CE–MS for comparative metabolomics of colon cancer cells treated with dietary polyphenols. Methods Mol Biol 869:185–195CrossRefGoogle Scholar
  7. 7.
    Atzei A, Atzori L, Moretti C, Barberini L, Noto A, Ottonello G, Fanos V (2011) Metabolomics in paediatric respiratory diseases and bronchiolitis. J Matern Fetal Neonatal Med 24(2):59–62CrossRefGoogle Scholar
  8. 8.
    Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R, Human Serum Metabolome (HUSERMET) Consortium (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083CrossRefGoogle Scholar
  9. 9.
    Soga T, Sugimoto M, Honma M, Mori M, Igarashi K, Kashikura K, Ikeda S, Hirayama A, Yamamoto T, Yoshida H, Otsuka M, Tsuji S, Yatomi Y, Sakuragawa T, Watanabe H, Nihei K, Saito T, Kawata S, Suzuki H, Tomita M, Suematsu M (2011) Serum metabolomics reveals γ-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J Hepatol 55(4):896–905CrossRefGoogle Scholar
  10. 10.
    Qin W, Li SF (2002) An ionic liquid coating for determination of sildenafil and UK-103,320 in human serum by capillary zone electrophoresis–ion trap mass spectrometry. Electrophoresis 23(24):4110–4116CrossRefGoogle Scholar
  11. 11.
    Jeong JS, Kim SK, Park SR (2012) Capillary electrophoresis mass spectrometry with sheathless electrospray ionization for high sensitivity analysis of underivatized amino acids. Electrophoresis 33(14):2112–2121CrossRefGoogle Scholar
  12. 12.
    Nin N, Valero JA, Lorente JA, de Paula M, Fernandez-Segoviano P, Sanchez-Ferrer A, Esteban A (2005) Large tidal volume mechanical ventilation induces vascular dysfunction in rats. J Trauma 59(3):711–716Google Scholar
  13. 13.
    Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, Cutz E, Liu M, Keshavjee S, Martin TR, Marshall JC, Ranieri VM, Slutsky AS (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289:2104–2112CrossRefGoogle Scholar
  14. 14.
    Ranieri VM, Giunta F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284:43–44CrossRefGoogle Scholar
  15. 15.
    Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A (2005) Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med 31(7):922–926CrossRefGoogle Scholar
  16. 16.
    Esteban A, Fernández-Segoviano P, Frutos-Vivar F, Aramburu JA, Nájera L, Ferguson ND, Alía I, Gordo F, Ríos F (2004) Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings. Ann Intern Med–445 Google Scholar
  17. 17.
    Serkova NJ, Van Rheen Z, Tobias M, Pitzer JE, Wilkinson JE, Stringer KA (2008) Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 295:152–161CrossRefGoogle Scholar
  18. 18.
    Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R, Standiford TJ (2011) Metabolic consequences of sepsis-induced acute lung injury revealed by plasma 1H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 300:L4–L11CrossRefGoogle Scholar
  19. 19.
    Tyurina YY, Tyurin VA, Kaynar AM, Kapralova VI, Wasserloos K, Li J, Mosher M, Wright L, Wipf P, Watkins S, Pitt BR, Kagan VE (2010) Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. Am J Physiol Lung Cell Mol Physiol 299(1):L73–L85CrossRefGoogle Scholar
  20. 20.
    Tyurina YY, Tyurin VA, Kapralova VI, Wasserloos K, Mosher M, Epperly MW, Greenberger JS, Pitt BR, Kagan VE (2011) Oxidative lipidomics of γ-radiation-induced lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. Radiat Res 175(5):610–621CrossRefGoogle Scholar
  21. 21.
    Long GL, Winefordner JD (1983) Limit of detection: a closer look at the IUPAC definition. Anal Chem 55(7):713A–724AGoogle Scholar
  22. 22.
    Gika H, Macpherson E, Theodoridis G, Wilson I (2008) Evaluation of the repeatability of ultra-performance liquid chromatography–TOF-MS for global metabolic profiling of human urine samples. J Chromatogr B 871(2):299–305CrossRefGoogle Scholar
  23. 23.
    Westerhuis J, Hoefsloot H, Smit S, Vis D, Smilde A, van Velzen E, van Duijnhoven J, van Dorsten F (2004) Assessment of PLSDA cross validation. Metabolomics 4:81–89CrossRefGoogle Scholar
  24. 24.
    Ciborowski M, Teul J, Martin-Ventura JL, Egido J, Barbas C (2012) Metabolomics with LC–QTOF-MS permits the prediction of disease stage in aortic abdominal aneurysm based on plasma metabolic fingerprint. PLoS One 7(2):31982CrossRefGoogle Scholar
  25. 25.
    Ismaiel OA, Halquist MS, Elmamly MY, Shalaby A, Karnes HT (2007) Monitoring phospholipids for assessment of matrix effects in a liquid chromatography–tandem mass spectrometry method for hydrocodone and pseudoephedrine in human plasma. J Chromatogr B 859:84–93CrossRefGoogle Scholar
  26. 26.
    Little JL, Wempe MF, Buchanan CM (2006) Liquid chromatography–mass spectrometry/mass spectrometry method development for drug metabolism studies: examining lipid matrix ionization effects in plasma. J Chromatogr B 833:219–230CrossRefGoogle Scholar
  27. 27.
    Ferguson ND, Frutos-Vivar F, Esteban A, Fernández-Segoviano P, Aramburu JA, Nájera L, Stewart TE (2005) Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med 33:2228–2234CrossRefGoogle Scholar
  28. 28.
    Chang DW, Hayashi S, Gharib SA, Vaisar T, King ST, Tsuchiya M, Ruzinski JT, Park DR, Matute-Bello G, Wurfel MM, Bumgarner R, Heinecke JW, Martin TR (2008) Proteomic and computational analysis of bronchoalveolar proteins during the course of the acute respiratory distress syndrome. Am J Respir Crit Care Med 178:701–709CrossRefGoogle Scholar
  29. 29.
    Murakami K, Enkhbaatar P, Yu YM, Traber LD, Cox RA, Hawkins HK, Tompkins RG, Herndon D, Traber DL (2007) L-arginine attenuates acute lung injury after smoke inhalation and burn injury in sheep. Shock 28(4):477–483CrossRefGoogle Scholar
  30. 30.
    Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI (2001) Transforming growth factor-beta(1) stimulates L-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis. Circulation 103(8):1121–1127CrossRefGoogle Scholar
  31. 31.
    Bergeron C, Boulet LP, Page N, Laviolette M, Zimmermann N, Rothenberg ME, Hamid Q (2007) Influence of cigarette smoke on the arginine pathway in asthmatic airways: increased expression of arginase I. J Allergy Clin Immunol 119(2):391–397CrossRefGoogle Scholar
  32. 32.
    Ueda S, Kato S, Matsuoka H, Kimoto M, Okuda S, Morimatsu M, Imaizumi T (2003) Regulation of cytokine-induced nitric oxide synthesis by asymmetric dimethylarginine: role of dimethylarginine dimethylaminohydrolase. Cric Res 92(2):226–233CrossRefGoogle Scholar
  33. 33.
    Cantoni GL (1975) Biological methylation: selected aspects. Annu Rev Biochem 44:435–451CrossRefGoogle Scholar
  34. 34.
    Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95(16):9220–9225CrossRefGoogle Scholar
  35. 35.
    Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA 93(13):6770–6774CrossRefGoogle Scholar
  36. 36.
    Boger RH, Bode-Boger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, Blaschke TF, Cooke JP (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98:1842–1847CrossRefGoogle Scholar
  37. 37.
    Miyazaki H, Matsuoka H, Cooke JP, Usui M, Ueda S, Okuda S (1999) Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation 99:1141–1146CrossRefGoogle Scholar
  38. 38.
    Choi YS, Yang HI, Cho S, Jung JA, Jeon YE, Kim HY, Seo SK, Lee BS (2012) Serum asymmetric dimethylarginine, apelin, and tumor necrosis factor-α levels in non-obese women with polycystic ovary syndrome. Steroids 77(13):1352–1358CrossRefGoogle Scholar
  39. 39.
    Tosun M, Erdurmus M, Bugdayci G, Celebi S, Alcelik A (2012) Aqueous humour and serum concentration of asymmetric dimethyl arginine in pseudoexfoliation syndrome. Br J Ophthalmol 96(8):1137–1140CrossRefGoogle Scholar
  40. 40.
    Bulau P, Zakrzewicz D, Kitowska K, Leiper J, Gunther A, Grimminger F, Eickelberg O (2007) Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA. Am J Physiol Lung Cell Mol Physiol 292(1):L18–L24CrossRefGoogle Scholar
  41. 41.
    Wells SM, Buford MC, Migliaccio CT, Holian A (2009) Elevated asymmetric dimethylarginine alters lung function and induces collagen deposition in mice. Am J Respir Cell Mol Biol 40:179–188CrossRefGoogle Scholar
  42. 42.
    Pullamsetti S, Kiss L, Ghofrani HA, Voswinckel R, Haredza P, Klepetko W, Aigner C, Fink L, Muyal JP, Weissmann N, Grimminger F, Seeger W, Schermuly RT (2005) Increased levels and reduced catabolism of asymmetric and symmetric dimethylarginines in pulmonary hypertension. FASEB J 19(9):1175–1177Google Scholar
  43. 43.
    Ahmad T, Mabalirajan U, Ghosh B, Agrawal A (2010) Altered asymmetric dimethyl arginine metabolism in allergically inflamed mouse lungs. Am J Respir Cell Mol Biol 42(1):3–8CrossRefGoogle Scholar
  44. 44.
    Sousse LE, Yamamoto Y, Enkhbaatar P, Rehberg SW, Wells SM, Leonard S, Traber MG, Yu YM, Cox RA, Hawkins HK, Traber LD, Herndon DN, Traber DL (2011) Acute lung injury-induced collagen deposition is associated with elevated asymmetric dimethylarginine and arginase activity. Shock 35(3):282–288CrossRefGoogle Scholar
  45. 45.
    dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–1655Google Scholar
  46. 46.
    Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859CrossRefGoogle Scholar
  47. 47.
    Tracey KJ, Czura CJ, Ivanova S (2001) Mind over immunity. FASEB J 15:1575–1576CrossRefGoogle Scholar
  48. 48.
    dos Santos CC, Shan Y, Akram A, Slutsky AS, Haitsma JJ (2011) Neuroimmune regulation of ventilator-induced lung injury. Am J Respir Crit Care Med 183(4):471–482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shama Naz
    • 1
  • Antonia Garcia
    • 1
  • Magdalena Rusak
    • 1
    • 2
  • Coral Barbas
    • 1
    Email author
  1. 1.CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de FarmaciaUniversidad San Pablo CEUMadridSpain
  2. 2.Department of Analytical ChemistryMedical University of BiałystokBiałystokPoland

Personalised recommendations