Analytical and Bioanalytical Chemistry

, Volume 405, Issue 14, pp 4937–4943 | Cite as

Mass spectrometric analysis reveals O-methylation of pyruvate kinase from pancreatic cancer cells

  • Weidong ZhouEmail author
  • Michela Capello
  • Claudia Fredolini
  • Leda Racanicchi
  • Erica Dugnani
  • Lorenzo Piemonti
  • Lance A. Liotta
  • Francesco Novelli
  • Emanuel F. Petricoin
Rapid Communication


Pyruvate kinase (PK) is an important glycolytic enzyme that catalyzes the dephosphorylation of phosphoenolpyruvate to pyruvate. Human PK isozyme M2 (PKM2), a splice variant of M1, is overexpressed in many cancer cells, and PKM2 has been investigated as a potential tumor marker for diagnostic assays and as a target for cancer therapy. To facilitate identification and characterization of PK, we studied the enzyme from pancreatic cancer cells and normal pancreatic duct cells by electrophoresis and mass spectrometry, and identified multiple O-methylated residues from PK. These findings advance our knowledge of the biochemical properties of PK and will be important in understanding its biological function in cells.


Pyruvate kinase (PK) is an important glycolytic enzyme that catalyzes the dephosphorylation of phosphoenolpyruvate to pyruvate. We studied the enzyme from pancreatic cancer cells and normal pancreatic duct cells by mass spectrometry, and identified multiple O-methylated residues from PK.


PKM2 Mass spectrometry Pancreatic cancer Metabolism Methylation 



Liquid chromatography–coupled tandem mass spectrometry


Pyruvate kinase


Pyruvate kinase isozyme M2



This work was supported in part by grants from the Fondazione San Paolo (Special Project Oncology), the European Community “Seventh Framework Program European Pancreatic Cancer-Tumor-Microenvironment Network (EPC-TM-Net, no. 256974)”, the Associazione Italiana Ricerca sul Cancro (AIRC) 5 x 1000 (no. 12182) and IG (nos 5548 and 11643), the Ministero della Salute “Progetto Integrato Oncologia”, Regione Piemonte “Ricerca Industriale e Sviluppo Precompetitivo (BIOPRO and ONCOPROT)”, Ricerca Industriale “Converging Technologies” (BIOTHER), Progetti strategici su tematiche di interesse regionale o sovra regionale (IMMONC), Ricerca Sanitaria Finalizzata, Ricerca Sanitaria Applicata, Ministero dell’Istruzione e della Ricerca (MIUR), Progetti di Rilevante Interesse Nazionale (PRIN 2009), and University of Turin-Progetti di Ateneo 2011 “Mechanisms of REsistance to anti-angiogenesis regimens THErapy (grant Rethe-ORTO11RKTW)”. MC is recipient of a fellowship from the Fondazione Italiana Ricerca sul Cancro (FIRC). We also thank the support from the College of Science at George Mason University.

Supplementary material

216_2013_6880_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1.36 kb)


  1. 1.
    Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15:300–308CrossRefGoogle Scholar
  2. 2.
    Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43:969–980CrossRefGoogle Scholar
  3. 3.
    Dombrauckas JD, Santarsiero BD, Mesecar AD (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44:9417–9429CrossRefGoogle Scholar
  4. 4.
    Hardt PD, Mazurek S, Toepler M, Schlierbach P, Bretzel RG, Eigenbrodt E, Kloer HU (2004) Faecal tumour M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer. Brit J Cancer 91:980–984Google Scholar
  5. 5.
    Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233CrossRefGoogle Scholar
  6. 6.
    Vander Heiden MG, Christofk HR, Schuman E, Subtelny AO, Sharfi H, Harlow EE, Xian J, Cantley LC (2010) Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol 79:1118–1124CrossRefGoogle Scholar
  7. 7.
    Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosinebinding protein. Nature 452:181–186CrossRefGoogle Scholar
  8. 8.
    Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283CrossRefGoogle Scholar
  9. 9.
    Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73CrossRefGoogle Scholar
  10. 10.
    David CJ, Chen M, Assanah M, Canoll P, Manley JL (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–368CrossRefGoogle Scholar
  11. 11.
    Chen M, David CJ, Manley JL (2012) Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins. Nat Struct Mol Biol 19:346–354CrossRefGoogle Scholar
  12. 12.
    Keller KE, Tan IS, Lee YS (2012) SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338:1069–1072CrossRefGoogle Scholar
  13. 13.
    Chaneton B, Hillmann P, Zheng L, Martin AC, Maddocks OD, Chokkathukalam A, Coyle JE, Jankevics A, Holding FP, Vousden KH, Frezza C, O’Reilly M, Gottlieb E (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491:458–462CrossRefGoogle Scholar
  14. 14.
    Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480:118–122CrossRefGoogle Scholar
  15. 15.
    Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696CrossRefGoogle Scholar
  16. 16.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefGoogle Scholar
  17. 17.
    Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217CrossRefGoogle Scholar
  18. 18.
    Cravatt BF, Simon GM, Yates JR 3rd (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000CrossRefGoogle Scholar
  19. 19.
    Nilsson T, Mann M, Aebersold R, Yates JR 3rd, Bairoch A, Bergeron JJ (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7:681–685CrossRefGoogle Scholar
  20. 20.
    Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214CrossRefGoogle Scholar
  21. 21.
    Zhou W, Capello M, Fredolini C, Piemonti L, Liotta LA, Novelli F, Petricoin EF (2011) Proteomic analysis of pancreatic ductal adenocarcinoma cells reveals metabolic alterations. J Proteome Res 10:1944–1152CrossRefGoogle Scholar
  22. 22.
    Zhou W, Capello M, Fredolini C, Racanicchi L, Piemonti L, Liotta LA, Novelli F, Petricoin EF (2012) Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 11:554–563CrossRefGoogle Scholar
  23. 23.
    Bluemlein K, Grüning NM, Feichtinger RG, Lehrach H, Kofler B, Ralser M (2011) No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2:393–400Google Scholar
  24. 24.
    Erce MA, Pang CN, Hart-Smith G, Wilkins MR (2012) The methylproteome and the intracellular methylation network. Proteomics 12:564–586CrossRefGoogle Scholar
  25. 25.
    Bass RB, Falke JJ (1999) The aspartate receptor cytoplasmic domain: in situ chemical analysis of structure, mechanism and dynamics. Structure 7:829–840CrossRefGoogle Scholar
  26. 26.
    Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386CrossRefGoogle Scholar
  27. 27.
    Clarke S (1985) Protein carboxyl methyltransferases: two distinct classes of enzymes. Annu Rev Biochem 54:479–506CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Weidong Zhou
    • 1
    Email author
  • Michela Capello
    • 2
    • 3
  • Claudia Fredolini
    • 1
    • 2
    • 3
  • Leda Racanicchi
    • 4
  • Erica Dugnani
    • 4
  • Lorenzo Piemonti
    • 4
  • Lance A. Liotta
    • 1
  • Francesco Novelli
    • 2
    • 3
  • Emanuel F. Petricoin
    • 1
  1. 1.Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasUSA
  2. 2.Azienza Ospedaliera Città della Salute e della Scienza di TorinoCenter for Experimental Research and Medical StudiesTurinItaly
  3. 3.Department of Molecular Biotechnology and Health ScienceUniversity of TurinTurinItaly
  4. 4.Diabetes Research InstituteSan Raffaele Scientific InstituteMilanoItaly

Personalised recommendations