Analytical and Bioanalytical Chemistry

, Volume 405, Issue 14, pp 4799–4809 | Cite as

LC-QTOF/MS metabolomic profiles in human plasma after a 5-week high dietary fiber intake

  • Anna Johansson-Persson
  • Thaer Barri
  • Matilda Ulmius
  • Gunilla ÖnningEmail author
  • Lars Ove Dragsted
Research Paper


The objective was to investigate the alterations of plasma metabolome profiles to identify exposure and effect markers of dietary fiber intake. Subjects (n = 25) aged 58.6 (1.1) years (mean and SD) with a body mass index of 26.6 (0.5) kg/m2 were given a high fiber (HF) and a low fiber (LF) diet, in a 5-week randomized controlled crossover intervention. The HF diet consisted of oat bran, rye bran, and sugar beet fiber incorporated into test food products, whereas the LF diet was made of equivalent food products to the HF diet, but without adding fibers. Blood plasma samples were collected at the start and end of each intervention period and analyzed by LC-QTOF/MS. In total, 6 features in positive mode and 14 features in negative mode were significantly different between the HF and the LF diet (p < 0.01, q < 0.05). Two markers, 2,6-dihydroxybenzoic acid and 2-aminophenol sulfate, were increased after HF diet, along with a tentatively identified saponin derived from oat avenacosides. The untargeted metabolomics approach enabled the identification of two new markers of dietary fiber intake in human plasma. Further studies will be needed to verify if these markers could serve as compliance markers of fiber intake.


LC-QTOF/MS Metabolomics Oat Rye Sugar beet Dietary fiber 



We gratefully thank RN Ingrid Palmquist for performing the blood sampling, M.Sc. Daniela Rago for LC-QTOF/MS analysis of some of the samples, and participating companies (Findus, Lantmännen, Nordic Sugar and Oatly) for providing the dietary fibers and for the development and production of the food products used in this study. This work has been supported by Nordic Centre of Excellence SYSDIET (Systems biology in controlled dietary interventions and cohort studies, no. 070014), OPUS (Optimal well-being, development and health for Danish children through a healthy New Nordic Diet, supported by a grant from the Nordea Foundation), the European Network of Excellence NuGO (The European Nutrigenomics Organization), the EU Network of Excellence ECNIS2 (Environmental Cancer Risk , Nutrition and Individual Susceptibility) and a VINNOVA grant (project number 2004–02285). Biomedical Nutrition, Lund University and the Department of Nutrition, Exercise and Sports, University of Copenhagen are members of the NuGO Association.

Conflict of interest

The authors have declared no conflict of interest.

Supplementary material

216_2013_6874_MOESM1_ESM.pdf (549 kb)
ESM 1 (PDF 549 KB)


  1. 1.
    Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69(1):30–42Google Scholar
  2. 2.
    Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67(4):188–205. doi: 10.1111/j.1753-4887.2009.00189.x CrossRefGoogle Scholar
  3. 3.
    Weickert MO, Pfeiffer AFH (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138(3):439–442Google Scholar
  4. 4.
    Andersson A, Marklund M, Diana M, Landberg R (2011) Plasma alkylresorcinol concentrations correlate with whole grain wheat and rye intake and show moderate reproducibility over a 2- to 3-month period in free-living Swedish adults. J Nutr 141(9):1712–1718. doi: 10.3945/jn.111.139238 CrossRefGoogle Scholar
  5. 5.
    Landberg R, Kamal-Eldin A, Aman P, Christensen J, Overvad K, Tjonneland A, Olsen A (2011) Determinants of plasma alkylresorcinol concentration in Danish post-menopausal women. Eur J Clin Nutr 65(1):94–101. doi: 10.1038/ejcn.2010.193 CrossRefGoogle Scholar
  6. 6.
    Landberg R, Kamal-Eldin A, Andersson A, Vessby B, Åman P (2008) Alkylresorcinols as biomarkers of whole-grain wheat and rye intake: plasma concentration and intake estimated from dietary records. Am J Clin Nutr 87(4):832–838Google Scholar
  7. 7.
    Ross AB, Bourgeois A, Macharia HN, Kochhar S, Jebb SA, Brownlee IA, Seal CJ (2012) Plasma alkylresorcinols as a biomarker of whole-grain food consumption in a large population: results from the WHOLEheart Intervention Study. Am J Clin Nutr 95(1):204–211. doi: 10.3945/ajcn.110.008508 CrossRefGoogle Scholar
  8. 8.
    Aubertin-Leheudre M, Koskela A, Samaletdin A, Adlercreutz H (2010) Responsiveness of urinary and plasma alkylresorcinol metabolites to rye intake in Finnish women. Cancers 2(2):513–522. doi: 10.3390/cancers2020513 CrossRefGoogle Scholar
  9. 9.
    Söderholm PP, Koskela AH, Lundin JE, Tikkanen MJ, Adlercreutz HC (2009) Plasma pharmacokinetics of alkylresorcinol metabolites: new candidate biomarkers for whole-grain rye and wheat intake. Am J Clin Nutr 90(5):1167–1171. doi: 10.3945/ajcn.2009.28290 CrossRefGoogle Scholar
  10. 10.
    Irakli MN, Samanidou VF, Biliaderis CG, Papadoyannis IN (2012) Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chem 134(3):1624–1632. doi: 10.1016/j.foodchem.2012.03.046 CrossRefGoogle Scholar
  11. 11.
    Thibault J-F, Renard CMGC, Guillon F (2001) Sugar beet fiber: production, composition, physicochemical properties, physiological effects, safety, and food applications. In: Cho SS, Dreher ML (eds) Handbook of dietary fiber. Marcel Dekker Inc., New York, pp. 553–582Google Scholar
  12. 12.
    Oakenfull D (2001) Physicochemical properties of dietary fiber: overview. In: Cho SS, Dreher ML (eds) Handbook of dietary fiber. Marcel Dekker Inc., New York, pp. 230–241Google Scholar
  13. 13.
    Pylkas AM, Juneja LR, Slavin JL (2005) Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. J Med Food 8(1):113–116. doi: 10.1089/jmf.2005.8.113 CrossRefGoogle Scholar
  14. 14.
    Mälkki Y (2001) Oat fiber: production, composition, physicochemical properties, physiological effects, safety, and food applications. In: Cho SS, Dreher ML (eds) Handbook of dietary fiber. Marcel Dekker Inc., New York, pp. 497–517Google Scholar
  15. 15.
    Biörklund M, van Rees A, Mensink RP, Önning G (2005) Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with beta-glucans from oats or barley: a randomised dose-controlled trial. Eur J Clin Nutr 59(11):1272–1281. doi: 10.1038/sj.ejcn.1602240 CrossRefGoogle Scholar
  16. 16.
    Thorsdottir I, Andersson H, Einarsson S (1998) Sugar beet fiber in formula diet reduces postprandial blood glucose, serum insulin and serum hydroxyproline. Eur J Clin Nutr 54(2):155–156CrossRefGoogle Scholar
  17. 17.
    Lu ZX, Walker KZ, Muir JG, Mascara T, O'Dea K (2000) Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am J Clin Nutr 71(5):1123–1128Google Scholar
  18. 18.
    Ulmius M, Johansson A, Önning G (2009) The influence of dietary fibre source and gender on the postprandial glucose and lipid response in healthy subjects. Eur J Nutr 48(7):395–402. doi: 10.1007/s00394-009-0026-x CrossRefGoogle Scholar
  19. 19.
    Johansson-Persson A, Ulmius M, Cloetens L, Karhu T, Herzig K-H, Önning G (2013) A high intake of dietary fiber influences C-reactive protein and fibrinogen, but not glucose and lipid metabolism, in mildly hypercholesterolemic subjects. Eur J Nutr. doi: 10.1007/s00394-013-0496-8
  20. 20.
    Gürdeniz G, Kristensen M, Skov T, Dragsted LO (2012) The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in fed vs. fasted rats. Metabolites 2(1):77–99. doi: 10.3390/metabo2010077 CrossRefGoogle Scholar
  21. 21.
    Kristensen M, Engelsen S, Dragsted L (2012) LC–MS metabolomics top-down approach reveals new exposure and effect biomarkers of apple and apple-pectin intake. Metabolomics 8(1):64–73. doi: 10.1007/s11306-011-0282-7 CrossRefGoogle Scholar
  22. 22.
    Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78(2):567–574. doi: 10.1021/ac051495j CrossRefGoogle Scholar
  23. 23.
    Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Series B Stat Methodol 64(3):479–498. doi: 10.1111/1467-9868.00346 CrossRefGoogle Scholar
  24. 24.
    Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3(3):211–221. doi: 10.1007/s11306-007-0082-2 CrossRefGoogle Scholar
  25. 25.
    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526. doi: 10.1093/nar/gkl923, Database issueCrossRefGoogle Scholar
  26. 26.
    Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27(6):747–751CrossRefGoogle Scholar
  27. 27.
    Onning G, Juillerat MA, Fay L, Asp N-G (1994) Degradation of oat saponins during heat processing—effect of pH, stainless steel, and iron at different temperatures. J Agric Food Chem 42(11):2578–2582. doi: 10.1021/jf00047a039 CrossRefGoogle Scholar
  28. 28.
    Nelson AC, Huang W, Moody DE (2001) Variables in human liver microsome preparation: impact on the kinetics of L-α-acetylmethadol (LAAM) N-demethylation and dextromethorphan O-demethylation. Drug Metab Dispos 29(3):319–325Google Scholar
  29. 29.
    Ridout CL, Price KR, Parkin G, Dijoux MG, Lavaud C (1994) Saponins from sugar beet and the floc problem. J Agric Food Chem 42(2):279–282. doi: 10.1021/jf00038a010 CrossRefGoogle Scholar
  30. 30.
    Massiot G, Dijoux M-G, Lavaud C, Men-Olivier LL, Connolly JD, Sheeley DM (1994) Seco-glycosides of oleanolic acid from Beta vulgaris. Phytochemistry 37(6):1667–1670. doi: 10.1016/s0031-9422(00)89589-8 CrossRefGoogle Scholar
  31. 31.
    Osbourn AE (2003) Saponins in cereals. Phytochemistry 62(1):1–4. doi: 10.1016/s0031-9422(02)00393-x CrossRefGoogle Scholar
  32. 32.
    Bae E-A, Park S-Y, Kim D-H (2000) Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull 23(12):1481–1485. doi: 10.1248/bpb.23.1481 CrossRefGoogle Scholar
  33. 33.
    Flåøyen A, Wilkins AL, Deng D, Brekke T (2001) Ovine metabolism of saponins: evaluation of a method for estimating the ovine uptake of steroidal saponins from Narthecium ossifragum. Vet Res Commun 25(3):225–238. doi: 10.1023/a:1006485726523 CrossRefGoogle Scholar
  34. 34.
    Kang L-P, Yu K, Zhao Y, Liu Y-X, Yu H-S, Pang X, Xiong C-Q, Tan D-W, Gao Y, Liu C, Ma B-P (2012) Characterization of steroidal glycosides from the extract of Paris polyphylla var. Yunnanensis by UPLC/Q-TOF MSE. J Pharm Biomed Anal 62:235–249. doi: 10.1016/j.jpba.2011.12.027 CrossRefGoogle Scholar
  35. 35.
    Bondia-Pons I, Barri T, Hanhineva K, Juntunen K, Dragsted LO, Mykkänen H, Poutanen K (2013) UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention. Mol Nutr Food Res. doi: 10.1002/mnfr.201200571
  36. 36.
    Gagliardo R, Chilton W (1992) Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J Chem Ecol 18(10):1683–1691. doi: 10.1007/bf02751095 CrossRefGoogle Scholar
  37. 37.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci. doi: 10.1073/pnas.0812874106
  38. 38.
    Hanhineva K, Rogachev I, Aura A-M, Aharoni A, Poutanen K, Mykkanen H (2011) Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. J Agric Food Chem 59(3):921–927. doi: 10.1021/jf103612u CrossRefGoogle Scholar
  39. 39.
    Iwasaki Y, Kino K, Nishide H, Kirimura K (2007) Regioselective and enzymatic production of γ-resorcylic acid from resorcinol using recombinant Escherichia coli cells expressing a novel decarboxylase gene. Biotechnol Lett 29(5):819–822. doi: 10.1007/s10529-007-9309-6 CrossRefGoogle Scholar
  40. 40.
    Ishii Y, Narimatsu Y, Iwasaki Y, Arai N, Kino K, Kirimura K (2004) Reversible and nonoxidative γ-resorcylic acid decarboxylase: characterization and gene cloning of a novel enzyme catalyzing carboxylation of resorcinol, 1,3-dihydroxybenzene, from Rhizobium radiobacter. Biochem Biophys Res Commun 324(2):611–620. doi: 10.1016/j.bbrc.2004.09.091 CrossRefGoogle Scholar
  41. 41.
    Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605. doi: 10.1079/BJN2002725 CrossRefGoogle Scholar
  42. 42.
    Onning G, Asp NG (1995) Effect of oat saponins on plasma and liver lipids in gerbils (Meriones unguiculatus) and rats. Br J Nutr 73(2):275–286. doi: 10.1079/BJN19950029 CrossRefGoogle Scholar
  43. 43.
    Matsuda H, Li Y, Murakami T, Matsumura N, Yamahara J, Yoshikawa M (1998) Antidiabetic principles of natural medicines. III. Structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity. Chem Pharm Bull 46(9):1399–1403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anna Johansson-Persson
    • 1
  • Thaer Barri
    • 2
  • Matilda Ulmius
    • 1
  • Gunilla Önning
    • 1
    Email author
  • Lars Ove Dragsted
    • 2
  1. 1.Biomedical Nutrition, Pure and Applied Biochemistry, Center for Applied Life Sciences, Department of ChemistryLund UniversityLundSweden
  2. 2.Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations