Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 14, pp 4913–4919 | Cite as

Application of graphene for the analysis of pharmaceuticals and personal care products in wastewater

  • Yong YuEmail author
  • Laosheng Wu
Research Paper

Abstract

A novel and reliable analytical method based on a graphene adsorbent for solid-phase extraction (SPE) derivatized with N-tert-butyldimethylsilyl-N- methyltrifluoroacetamide and analyzed by gas chromatography–mass spectrometry was developed for determination of nine pharmaceuticals and personal care products (PPCPs) in wastewater samples. Different ratios of graphene/silica gel were tested, with 20 % graphene/silica gel giving the best performance as an SPE adsorbent. The mean recoveries of the target analytes obtained by 20 % graphene/silica gel SPE ranged from 58.1 to 87.6 %. The limit of quantification ranged from 30 to 259 ng/L and from 13 to 115 ng/L for the influent and effluent, respectively. By comparing the accuracy and precision of 20 % graphene/silica gel and Oasis HLB SPE cartridges, we demonstrated that the method can be satisfactorily used for the analysis of PPCPs in wastewater samples. We applied the method to wastewater samples from a sewage treatment plant near Riverside, California, to track the concentration change of PPCPs in the treatment processes.

Keywords

Pharmaceuticals and personal care products Graphene Solid-phase extraction Gas chromatography–mass spectrometry 

Notes

Acknowledgments

We thank Frederick Ernst for his help during the sample collection.

Supplementary material

216_2013_6867_MOESM1_ESM.pdf (274 kb)
ESM 1 (PDF 274 kb)

References

  1. 1.
    Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S et al (2012) Environ Health Perspect 120(9):1221–1229CrossRefGoogle Scholar
  2. 2.
    Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Environ Pollut 163:287–303CrossRefGoogle Scholar
  3. 3.
    Verlicchi P, Al-Aukidy M, Zambello E (2012) Sci Total Environ 429:123–155CrossRefGoogle Scholar
  4. 4.
    Le Corre KS, Ort C, Kateley D, Allen B, Escher BI, Keller J (2012) Environ Int 45:99–111CrossRefGoogle Scholar
  5. 5.
    Gao P, Ding YJ, Li H, Xagoraraki I (2012) Chemosphere 88(1):17–24CrossRefGoogle Scholar
  6. 6.
    Gracia-Lor E, Sancho JV, Serrano R, Hernández F (2012) Chemosphere 87(5):453–462CrossRefGoogle Scholar
  7. 7.
    Scheurer M, Michel A, Brauch HJ, Ruck W, Sacher F (2012) Water Res 46(15):4790–4802CrossRefGoogle Scholar
  8. 8.
    Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D (2012) Sci Total Environ 430:109–118CrossRefGoogle Scholar
  9. 9.
    de Jongh CM, Kooij PJF, de Voogt P, ter Laak TL (2012) Sci Total Environ 427–428:70–77CrossRefGoogle Scholar
  10. 10.
    Lavén M, Alsberg T, Yu Y, Adolfsson-Erici M, Sun HW (2009) J Chromatogr A 1216(1):49–62CrossRefGoogle Scholar
  11. 11.
    Baker DR, Kasprzyk-Hordern B (2011) J Chromatogr A 1218(12):1620–1631CrossRefGoogle Scholar
  12. 12.
    Yu Y, Wu LS (2011) J Chromatogr A 1218(18):2483–2489CrossRefGoogle Scholar
  13. 13.
    Gracia-Lor E, Martínez M, Sancho JV, Peñuela G, Hernández F (2012) Talanta 99:1011–1023CrossRefGoogle Scholar
  14. 14.
    Maldaner L, Jardim ICSF (2012) Talanta 100:38–44CrossRefGoogle Scholar
  15. 15.
    Gros M, Rodríguez-Mozaz S, Barceló D (2012) J Chromatogr A 1248:104–121CrossRefGoogle Scholar
  16. 16.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666–669CrossRefGoogle Scholar
  17. 17.
    Geim AK, Novoselov KS (2007) Nat Mater 6(3):183–191CrossRefGoogle Scholar
  18. 18.
    Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) Angew Chem Int Ed 48(26):4785–4787CrossRefGoogle Scholar
  19. 19.
    Geim AK (2009) Science 324(5934):1530–1534CrossRefGoogle Scholar
  20. 20.
    Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R (2009) J Am Chem Soc 131(23):8262–8270CrossRefGoogle Scholar
  21. 21.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22(35):3906–3924CrossRefGoogle Scholar
  22. 22.
    Yoo EJ, Okata T, Akita T, Kohyama M, Nakamura JJ, Honma I (2009) Nano Lett 9(6):2255–2259CrossRefGoogle Scholar
  23. 23.
    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8(10):3498–3502CrossRefGoogle Scholar
  24. 24.
    Dong XL, Cheng JS, Li JH, Wang YS (2010) Anal Chem 82(14):6208–6214CrossRefGoogle Scholar
  25. 25.
    Chen J, Zou J, Zeng J, Song X, Ji J, Wang Y, Ha J, Chen X (2010) Anal Chim Acta 678(1):44–49CrossRefGoogle Scholar
  26. 26.
    Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G (2011) J Chromatogr A 1218(2):197–204CrossRefGoogle Scholar
  27. 27.
    Zhang H, Low WP, Lee HK (2012) J Chromatogr A 1233:16–21CrossRefGoogle Scholar
  28. 28.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  29. 29.
    Zhou Y, Bao QL, Tang LAL, Zhong YL, Loh KP (2009) Chem Mater 21(13):2950–2956CrossRefGoogle Scholar
  30. 30.
    Wang HL, Robinson JT, Li XL, Dai HJ (2009) J Am Chem Soc 131(29):9910–9911CrossRefGoogle Scholar
  31. 31.
    Yu Y, Wu LS (2012) Talanta 89:258–263CrossRefGoogle Scholar
  32. 32.
    Liu Q, Shi J, Jiang G (2012) TrAC Trends Anal Chem 37:1–11CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Environmental SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations