Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 14, pp 4895–4904 | Cite as

Chloroaluminum phthalocyanine thin films: chemical reaction and molecular orientation

  • Florian Latteyer
  • Heiko Peisert
  • Johannes Uihlein
  • Tamara Basova
  • Peter Nagel
  • Michael Merz
  • Stefan Schuppler
  • Thomas Chassé
Original Paper

Abstract

The chemical transformation of the polar chloroaluminum phthalocyanine, AlClPc, to μ-(oxo)bis(phthalocyaninato)aluminum(III), (PcAl)2O, in thin films on indium tin oxide is studied and its influence on the molecular orientation is discussed. The studies were conducted using complementary spectroscopic techniques: Raman spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In addition, density functional theory calculations were performed in order to identify specific vibrations and to monitor the product formation. The thin films of AlClPc were annealed in controlled environmental conditions to obtain (PcAl)2O. It is shown that the chemical transformation in the thin films can proceed only in the presence of water. The influence of the reaction and the annealing on the molecular orientation was studied with Raman spectroscopy and NEXAFS spectroscopy in total electron yield and partial electron yield modes. The comparison of the results obtained from these techniques allows the determination of the molecular orientation of the film as a function of the probing depth.

Illustration of the dimerization reaction of MClPc to (PcM)2O.

Keywords

Interface/surface analysis Thin films Chloroaluminum phthalocyanine 

Notes

Acknowledgments

We thank W. Neu for technical assistance and V. Kiselev for fruitful discussions. We gratefully thank the bwGRiD project for computational resources. We also acknowledge the ANKA Angstroemquelle Karlsruhe for the provision of beam time at the WERA beamline. Financial support from the German Research Council (PE 546/5-1 and CH 132/23-1) is gratefully acknowledged.

References

  1. 1.
    Horowitz G (1998) Adv Mater 10(5):365–377CrossRefGoogle Scholar
  2. 2.
    Horowitz G, Hajlaoui ME (2000) Adv Mater 12(14):1046–1050CrossRefGoogle Scholar
  3. 3.
    Armstrong NR, Wang WN, Alloway DM, Placencia D, Ratcliff E, Brumbach M (2009) Macromol Rapid Commun 30(9–10):717–731CrossRefGoogle Scholar
  4. 4.
    Kim DY, So F, Gao YL (2009) Sol Energy Mater Sol Cells 93(9):1688–1691CrossRefGoogle Scholar
  5. 5.
    Dong SQ, Tian HK, Song D, Yang ZH, Yan DH, Geng YH, Wang FS (2009) Chem Commun 3086–3088Google Scholar
  6. 6.
    Sergeyev S, Pisula W, Geerts YH (2007) Chem Soc Rev 36(12):1902–1929CrossRefGoogle Scholar
  7. 7.
    Basova T, Latteyer F, Atilla D, Gurek AG, Hassan A, Ahsen V, Peisert H, Chassé T (2010) Thin Solid Films 518(20):5745–5752CrossRefGoogle Scholar
  8. 8.
    Kolotovska V, Friedrich M, Zahn DRT, Salvan G (2006) J Cryst Growth 291(1):166–174CrossRefGoogle Scholar
  9. 9.
    Schuster BE, Basova TV, Peisert H, Chassé T (2009) Chemphyschem 10(11):1874–1881CrossRefGoogle Scholar
  10. 10.
    Basova TV, Kiselev VG, Plyashkevich VA, Cheblakov PB, Latteyer F, Peisert H, Chassé T (2011) Chem Phys 380(1–3):40–47CrossRefGoogle Scholar
  11. 11.
    Latteyer F, Peisert H, Aygül U, Biswas I, Petraki F, Basova T, Vollmer A, Chassé T (2011) J Phys Chem C 115(23):11657–11665CrossRefGoogle Scholar
  12. 12.
    Wynne KJ (1985) Inorg Chem 24(9):1339–1343CrossRefGoogle Scholar
  13. 13.
    Atilla D, Kilinc N, Yuksel F, Gurek AG, Ozturk ZZ, Ahsen V (2009) Synth Met 159(1–2):13–21CrossRefGoogle Scholar
  14. 14.
    Miyajima K, Okada E, Nakajima A, Kaya K (2003) Chem Lett 32(3):280–281CrossRefGoogle Scholar
  15. 15.
    Zhou F, Zeile U, Hees M, Plies E, Hanack M (1997) Eur J Cell Biol 74:83–83Google Scholar
  16. 16.
    Dottinger SE, Hohloch M, Hohnholz D, Segura JL, Steinhuber E, Hanack M (1997) Synth Met 84(1–3):267–268CrossRefGoogle Scholar
  17. 17.
    Aroca R, Jennings C, Loutfy RO, Hor AM (1987) Spectrochim Acta A 43(6):725–730CrossRefGoogle Scholar
  18. 18.
    Aroca R, Zeng ZQ, Mink J (1990) J Phys Chem Solids 51(2):135–139CrossRefGoogle Scholar
  19. 19.
    Basova T, Plyashkevich V, Petraki F, Peisert H, Chassé T (2011) J Chem Phys 134(12):124703–124708CrossRefGoogle Scholar
  20. 20.
    Peisert H, Biswas I, Knupfer M, Chassé T (2009) Phys Status Solidi B 246(7):1529–1545CrossRefGoogle Scholar
  21. 21.
    Huang YL, Wang R, Niu TC, Kera S, Ueno N, Pflaum J, Wee ATS, Chen W (2010) Chem Commun 46(47):9040–9042CrossRefGoogle Scholar
  22. 22.
    Dick S, Peisert H, Dini D, Hanack M, Cook MJ, Chambrier I, Chasse T (2005) J Appl Phys 97(7):073715–073718CrossRefGoogle Scholar
  23. 23.
    Kolacyak D, Peisert H, Chassé T (2009) Appl Phys A Mater 95(1):173–178CrossRefGoogle Scholar
  24. 24.
    Basova TV, Kiselev VG, Schuster BE, Peisert H, Chassé T (2009) J Raman Spectrosc 40(12):2080–2087CrossRefGoogle Scholar
  25. 25.
    Aristov VY, Molodtsova OV, Maslyuk VV, Vyalikh DV, Zhilin VM, Ossipyan YA, Bredow T, Mertig I, Knupfer M (2008) J Chem Phys 128(3):034703–034706CrossRefGoogle Scholar
  26. 26.
    Figgis BN, Kucharski ES, Reynolds PA (1989) J Am Chem Soc 111(5):1683–1692CrossRefGoogle Scholar
  27. 27.
    Keil C, Schlettwein D (2011) Org Electron 12(8):1376–1382CrossRefGoogle Scholar
  28. 28.
    Santerre F, Cote R, Lalande G, Gastonguay L, Guay D, Dodelet JP (1995) J Phys Chem 99(47):17198–17206CrossRefGoogle Scholar
  29. 29.
    Santerre F, Cote R, Veilleux G, SaintJacques RG, Dodelet JP (1996) J Phys Chem 100(18):7632–7645CrossRefGoogle Scholar
  30. 30.
    Seah MP, Dench WA (1979) Surf Interface Anal 1(1):2–11. doi: 10.1002/sia.740010103 CrossRefGoogle Scholar
  31. 31.
    Yeh JJ, Lindau I (1985) At Data Nucl Data Tables 32(1):1–155CrossRefGoogle Scholar
  32. 32.
    Hintz H, Egelhaaf HJ, Peisert H, Chassé T (2010) Polym Degrad Stab 95(5):818–825CrossRefGoogle Scholar
  33. 33.
    Tackley DR, Dent G, Smith WE (2001) Phys Chem Chem Phys 3(8):1419–1426CrossRefGoogle Scholar
  34. 34.
    Tackley DR, Dent G, Smith WE (2000) Phys Chem Chem Phys 2(18):3949–3955CrossRefGoogle Scholar
  35. 35.
    Zeng ZQ, Aroca R, Hor AM, Loutfy RO (1989) J Raman Spectrosc 20(7):467–471CrossRefGoogle Scholar
  36. 36.
    Saini GSS, Singh S, Kaur S, Kumar R, Sathe V, Tripathi SK (2009) J Phys-Condens Mater 21(22):225006–225009CrossRefGoogle Scholar
  37. 37.
    Kato K, Saito Y, Ohdaira Y, Shinbo K, Kaneko F (2006) Thin Solid Films 499(1–2):174–178CrossRefGoogle Scholar
  38. 38.
    Biswas I, Peisert H, Nagel M, Casu MB, Schuppler S, Nagel P, Pellegrin E, Chassé T (2007) J Chem Phys 126(17):174704–174705CrossRefGoogle Scholar
  39. 39.
    Ottaviano L, DiNardo S, Lozzi L, Passacantando M, Picozzi P, Santucci S (1997) Surf Sci 373(2–3):318–332CrossRefGoogle Scholar
  40. 40.
    Brena B, Luo Y, Nyberg M, Carniato S, Nilson K, Alfredsson Y, Ahlund J, Martensson N, Siegbahn H, Puglia C (2004) Phys Rev B 70(19):195214–195216CrossRefGoogle Scholar
  41. 41.
    Peisert H, Knupfer M, Fink J (2002) Surf Sci 515(2–3):491–498CrossRefGoogle Scholar
  42. 42.
    Zhang L, Peisert H, Biswas I, Knupfer M, Batchelor D, Chassé T (2005) Surf Sci 596(1–3):98–107CrossRefGoogle Scholar
  43. 43.
    Zahn DRT, Gavrila GN, Salvan G (2007) Chem Rev 107(4):1161–1232CrossRefGoogle Scholar
  44. 44.
    Kampen TU, Salvan G, Paraian A, Himcinschi C, Kobitski AY, Friedrich M, Zahn DRT (2003) Appl Surf Sci 212:501–507CrossRefGoogle Scholar
  45. 45.
    Liu JX, Schupbach B, Bashir A, Shekhah O, Nefedov A, Kind M, Terfort A, Wöll C (2010) Phys Chem Chem Phys 12(17):4459–4472CrossRefGoogle Scholar
  46. 46.
    Damen TC, Porto SPS, Tell B (1966) Phys Rev 142(2):570–574CrossRefGoogle Scholar
  47. 47.
    Munisso MC, Zhu WL, Pezzotti G (2009) Phys Status Solidi B 246(8):1893–1900CrossRefGoogle Scholar
  48. 48.
    Presser V, Schuster BE, Casu MB, Heinemeyer U, Schreiber F, Nickel KG, Chassé T (2009) J Raman Spectrosc 40(12):2015–2022CrossRefGoogle Scholar
  49. 49.
    Basova TV, Kolesov BA (1998) Thin Solid Films 325(1–2):140–144CrossRefGoogle Scholar
  50. 50.
    Harris M, Appel G, Ade H (2003) Macromolecules 36(9):3307–3314CrossRefGoogle Scholar
  51. 51.
    Floreano L, Cossaro A, Gotter R, Verdini A, Bavdek G, Evangelista F, Ruocco A, Morgante A, Cvetko D (2008) J Phys Chem C 112(29):10794–10802CrossRefGoogle Scholar
  52. 52.
    Holland BN, Peltekis N, Farrelly T, Wilks RG, Gavrila G, Zahn DRT, McGuinness C, McGovern IT (2009) Phys Status Solidi B 246(7):1546–1551CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florian Latteyer
    • 1
  • Heiko Peisert
    • 1
  • Johannes Uihlein
    • 1
  • Tamara Basova
    • 2
  • Peter Nagel
    • 3
  • Michael Merz
    • 3
  • Stefan Schuppler
    • 3
  • Thomas Chassé
    • 1
  1. 1.Institut für Physikalische und Theoretische ChemieUniversität TübingenTübingenGermany
  2. 2.Nikolaev Institute of Inorganic ChemistryRussian Academy of SciencesNovosibirskRussia
  3. 3.Institut fuer Festkorperphysik (IFP)KarlsruheGermany

Personalised recommendations