Analytical and Bioanalytical Chemistry

, Volume 405, Issue 11, pp 3907–3911 | Cite as

Hybridization detection of enzyme-labeled DNA at electrically heated electrodes

  • Anne Walter
  • Annette-Enrica Surkus
  • Gerd-Uwe FlechsigEmail author
Technical Note


In this report we describe an electrochemical DNA hybridization sensor approach, in which signal amplification is achieved using heated electrodes together with an enzyme as DNA-label. On the surface of the heatable low temperature co-fired ceramic (LTCC) gold electrode, an immobilized thiolated capture probe was hybridized with a biotinylated target using alkaline phosphatase (SA-ALP) as reporter molecule. The enzyme label converted the redox-inactive substrate 1-naphthyl phosphate (NAP) into the redox-active 1-naphthol voltammetrically determined at the modified gold LTCC electrode. During the measurement only the electrode was heated leaving the bulk solution at ambient temperature. Elevated temperature during detection led to increased enzyme activity and enhanced analytical signals for DNA hybridization detection. The limit of detection at 53 °C electrode temperature was 1.2 nmol/L.


DNA hybridization Heated biosensor Enzyme label Electrochemical detection Alkaline phosphatase 



The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG FL 384/4-1, FL 384/4-2 and FL 384/7-1 Heisenberg Fellowship) and the Interdisciplinary Faculty of the University of Rostock for financial support.

Supporting Information

Supporting information is available online: Fig. S1 illustrating the calculation of the LODs from the calibration data for both 21 and 53 °C measurement temperature.

Supplementary material

216_2013_6815_MOESM1_ESM.pdf (149 kb)
ESM 1 (PDF 149 kb)


  1. 1.
    Sadik OA, Aluoch AO, Zhou AL (2009) Biosens Bioelectron 24:2749–2765CrossRefGoogle Scholar
  2. 2.
    Hvastkovs EG, Buttry DA (2010) Analyst 135:1817–1829CrossRefGoogle Scholar
  3. 3.
    Tosar JP, Branas G, Laiz J (2010) Biosens Bioelectron 26:1205–1217CrossRefGoogle Scholar
  4. 4.
    Palecek E, Bartosik M (2012) Chem Rev 112:3427–3481CrossRefGoogle Scholar
  5. 5.
    Laschi S, Palchetti I, Marrazza G, Mascini M (2009) Bioelectrochem 76:214–220CrossRefGoogle Scholar
  6. 6.
    Silvestrini M, Fruk L, Ugo P (2013) Biosens Bioelectron 40:265–270CrossRefGoogle Scholar
  7. 7.
    Caruana DJ, Heller A (1999) J Am Chem Soc 121:769–774CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Kim HH, Heller A (2003) Anal Chem 75:3267–3269CrossRefGoogle Scholar
  9. 9.
    Albers J, Grunwald T, Nebling E, Piechotta G, Hintsche R (2003) Anal Bioanal Chem 377:521–527CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Chiu CW, Liang H (2012) Sensors 12:15036–15062CrossRefGoogle Scholar
  11. 11.
    Mandler D, Kraus-Ophir D (2011) J Solid State Electrochem 15:1535–1558CrossRefGoogle Scholar
  12. 12.
    Carpini G, Lucarelli F, Marrazza G, Mascini M (2004) Biosens Bioelectron 20:167–175CrossRefGoogle Scholar
  13. 13.
    Patolsky F, Lichtenstein A, Willner I (2001) Nature 19:253–257CrossRefGoogle Scholar
  14. 14.
    Lucarelli F, Marrazza G, Mascini M (2006) Langmuir 22:4305–4309CrossRefGoogle Scholar
  15. 15.
    de Lumley-Woodyear T, Caruana DJ, Campbell CN, Heller A (1999) Anal Chem 71:394–398CrossRefGoogle Scholar
  16. 16.
    Meunier-Prest R, Raveau S, Finot E, Legacy G, Cherkaoui-Malki M, Latruffe N (2003) Nucleic Acids Res 31:e150CrossRefGoogle Scholar
  17. 17.
    Centi S, Laschi S, Mascini M (2007) Talanta 73:394–399CrossRefGoogle Scholar
  18. 18.
    Miranda-Castro R, Lobo-Castañón J, Miranda-Ordieres AJ, Tuñón-Blanco P (2010) Electroanalysis 22:1297–1305CrossRefGoogle Scholar
  19. 19.
    Miranda-Castro R, De-los Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2009) Biosens Bioelectron 24:2390–2396CrossRefGoogle Scholar
  20. 20.
    Preechaworapun A, Dai Z, Xiang Y, Chailapakul O, Wang J (2008) Talanta 76:424–431CrossRefGoogle Scholar
  21. 21.
    Silva E, Mascini M, Centi S, Turner APF (2007) Anal Lett 40:1371–1385CrossRefGoogle Scholar
  22. 22.
    Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Biosens Bioelectron 22:1544–1549CrossRefGoogle Scholar
  23. 23.
    Lau C, Reiter S, Schuhmann W, Gründler P (2004) Anal Bioanal Chem 379:255–260CrossRefGoogle Scholar
  24. 24.
    Lau C, Borgmann S, Maciejewska M, Ngounou B, Gründler P, Schuhmann W (2007) Biosens Bioelectron 22:3014–3020CrossRefGoogle Scholar
  25. 25.
    Tseng TF, Yang JL, Chuang MC, Lou SL, Galik M, Flechsig GU, Wang J (2009) Electrochem Commun 11:1819–1822CrossRefGoogle Scholar
  26. 26.
    Flechsig GU, Peter J, Hartwich G, Wang J, Gründler P (2005) Langmuir 21:7848–7853CrossRefGoogle Scholar
  27. 27.
    Peter J, Reske T, Flechsig GU (2007) Electroanalysis 19:1356–1361CrossRefGoogle Scholar
  28. 28.
    Wachholz F, Gimsa J, Duwensee H, Grabow H, Gründler P, Flechsig GU (2007) Electroanalysis 19:535–540CrossRefGoogle Scholar
  29. 29.
    Wang J, Jasinski M, Flechsig GU, Gründler P, Tian B (2000) Talanta 50:1205–1210CrossRefGoogle Scholar
  30. 30.
    Wachholz F, Biała K, Piekarz M, Flechsig GU (2007) Electrochem Commun 9:2346–2352CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anne Walter
    • 1
  • Annette-Enrica Surkus
    • 1
  • Gerd-Uwe Flechsig
    • 1
    • 2
    Email author
  1. 1.University of RostockDepartment of ChemistryRostockGermany
  2. 2.Gensoric GmbHRostockGermany

Personalised recommendations