Analytical and Bioanalytical Chemistry

, Volume 405, Issue 11, pp 3673–3691

Local control of protein binding and cell adhesion by patterned organic thin films

  • Frank Meiners
  • Inka Plettenberg
  • Julia Witt
  • Britta Vaske
  • Andreas Lesch
  • Izabella Brand
  • Gunther Wittstock
Review

DOI: 10.1007/s00216-013-6748-x

Cite this article as:
Meiners, F., Plettenberg, I., Witt, J. et al. Anal Bioanal Chem (2013) 405: 3673. doi:10.1007/s00216-013-6748-x

Abstract

Control of the cell adhesion and growth on chemically patterned surfaces is important in an increasing number of applications in biotechnology and medicine, for example implants, in-vitro cellular assays, and biochips. This review covers patterning techniques for organic thin films suitable for site-directed guidance of cell adhesion to surfaces. Available surface patterning techniques are critically evaluated, with special emphasis on surface chemistry that can be switched in time and space during cultivation of cells. Examples from the authors’ laboratory include the use of cell-repellent self-assembled monolayers (SAM) terminated by oligoethylene glycol (OEG) units and the lifting of the cell repellent properties by use of electrogenerated Br2/HOBr which can be performed with positionable microelectrodes. Structural changes of the SAM were analyzed by polarization-modulated infrared reflection absorption spectroscopy (PM IRRAS). Use of a soft array system of individually addressable microelectrodes enables formation of flexible and complex patterns in a short time and has the potential for further acceleration of probe-induced local manipulation of cell adhesion.

Keywords

Cell adhesion Scanning electrochemical microscopy Surface modification Self assembled monolayers Multielectrode probes 

Abbreviations

μCP

Microcontact printing

μFN

Microfluidic networks

AFM

Atomic force microscopy/microscope

ATRP

Atom transfer radical polymerization

CLSM

Confocal laser scanning microscopy/microscope

DMAEMA

2-(Dimethylamino)ethyl methacrylate

D-OEG

Deuterated oligo(ethylene glycol)

DPN

Dip-pen nanolithography

DsRed

Red fluorescent protein

ECM

Extracellular matrix

ECSTM

Electrochemical scanning tunneling microscopy

fwhm

Full width at half maximum

GOx

Glucose oxidase

ITO

Indium tin oxide

IR

Infrared

IRRAS

Infrared reflection–absorption spectroscopy

MS

Mass spectrometry/spectrometer

NVOC

Nitroveratryloxycarbonyl

PDMS

Poly(dimethylsiloxane)

PET

Poly(ethylene terephthalate)

PFM SFM

Pulsed force scanning-force microscopy/microscope

OEG

Oligo(ethylene glycol)

PEG

Poly(ethylene glycol)

PEG-DMA

Poly(ethylene glycol)-dimethacrylate

PEO-b-P4VP

Poly(ethylene oxide)-block-poly(4-vinylpyridine)

PM IRRAS

Polarization-modulation infrared-reflection absorption spectroscopy

POPS

Polymer-on-polymer stamping

RGD

Abbreviation for the amino acid sequence Arg–Gly–Asp

SAM

Self-assembled monolayer

SECM

Scanning electrochemical microscopy/microscope

SFM

Scanning force microscopy/microscope

UME

Ultramicroelectrode

UV

Ultraviolet

XPS

X-ray photoelectron spectroscopy

Supplementary material

216_2013_6748_MOESM1_ESM.pdf (186 kb)
ESM 1(PDF 185 kb)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frank Meiners
    • 1
  • Inka Plettenberg
    • 1
  • Julia Witt
    • 1
  • Britta Vaske
    • 1
  • Andreas Lesch
    • 1
    • 2
  • Izabella Brand
    • 1
  • Gunther Wittstock
    • 1
    • 3
  1. 1.Faculty of Mathematics and Natural Sciences, Center of Interface Science, Department of ChemistryCarl von Ossietzky University of OldenburgOldenburgGermany
  2. 2.Laboratoire d’Electrochimie Physique et AnalytiqueÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Fakultät für Mathematik und Naturwissenschaften, Center of Interface Science, Institut für Reine und Angewandte ChemieCarl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations