Analytical and Bioanalytical Chemistry

, Volume 405, Issue 10, pp 3117–3123

Cloud point extraction of Δ9-tetrahydrocannabinol from cannabis resin

  • S. Ameur
  • B. Haddou
  • Z. Derriche
  • J. P. Canselier
  • C. Gourdon
Original Paper


A cloud point extraction coupled with high performance liquid chromatography (HPLC/UV) method was developed for the determination of Δ9-tetrahydrocannabinol (THC) in micellar phase. The nonionic surfactant “Dowfax 20B102” was used to extract and pre-concentrate THC from cannabis resin, prior to its determination with a HPLC–UV system (diode array detector) with isocratic elution. The parameters and variables affecting the extraction were investigated. Under optimum conditions (1 wt.% Dowfax 20B102, 1 wt.% Na2SO4, T = 318 K, t = 30 min), this method yielded a quite satisfactory recovery rate (~81 %). The limit of detection was 0.04 μg mL−1, and the relative standard deviation was less than 2 %. Compared with conventional solid–liquid extraction, this new method avoids the use of volatile organic solvents, therefore is environmentally safer.


Cannabis Δ9-Tetrahydrocannabinol Cloud point extraction Coacervate HPLC Diode array detector Nonionic surfactant 



Accelerated solvent extraction






Cloud point extraction


Cloud point temperature


Photodiode array detector


High performance liquid chromatography


Liquid–liquid extraction


Limit of detection


Relative standard deviation


Solid-phase extraction


Solid-phase microextraction




Tetrahydrocannabinolic acid


  1. 1.
    United Nations Office on Drugs and Crime (2010) World drug report 2010. United Nations Publication. UNODC, ViennaGoogle Scholar
  2. 2.
    Moffat AC (2002) The legalisation of cannabis for medical use. Science & Justice 42(1):55–57CrossRefGoogle Scholar
  3. 3.
    Seamon M, Fass J, Maniscalo-Feichtl M, Abu-Sharie N (2007) Medical marijuana and the developing role of the pharmacist. Amer J Health-System Pharm 64(10):1037–1044CrossRefGoogle Scholar
  4. 4.
    Radwan M, Elsohly MA, Slade D (2008) Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry 69:2627–2633CrossRefGoogle Scholar
  5. 5.
    Lewis R, Ward S, Johnson R, Thorburn BD (2005) Distribution of the principal cannabinoids within bars of compressed cannabis resin. Anal Chim Acta 538:399–405CrossRefGoogle Scholar
  6. 6.
    Davis TWM, Farmilo CG, Osadchuk M (1963) Identification and origin determination of cannabis by gas and paper chromatography. Anal Chem 35:751–755CrossRefGoogle Scholar
  7. 7.
    Novotny M, Lee ML, Chow-Eng L, Raymond A (1976) Analysis of marijuana samples from different origins by high-resolution gas-liquid chromatography for forensic application. Anal Chem 48:24–29CrossRefGoogle Scholar
  8. 8.
    Phillips R, Turk R, Manno J, Jain N, Forney R (1970) Seasonal variation in cannabinolic content of Indiana marihuana. J Forensic Sci 15:191–200Google Scholar
  9. 9.
    Baker PB, Gough TA, Taylor BJ (1983) The physical and chemical features of cannabis plants grown in the United Kingdom of Great Britain and Northern Ireland from seeds of known origin—part II: second generation studies. Bull Narc 35(1):51–62Google Scholar
  10. 10.
    Stefanido M, Athanaselis S, Alevisopoulos G, Papoutsis J, Koutselinis A (2000) D9-Tetrahydrocannabinol content in cannabis plants of Greek origin. Chem Pharm Bull 48(5):743–745CrossRefGoogle Scholar
  11. 11.
    Carbone M, Castelluccio F, Daniele A (2010) Characterization of oxidative degradation products of ∆9-tetrahydrocannabinol. Tetrahedron 66:9497–9501CrossRefGoogle Scholar
  12. 12.
    Hunault CC, Vaneijkeren JCH, Mensinga T, de Vries I, Leendersa MEC, Meulenbelt DJ (2010) Disposition of smoked cannabis with high ∆9tetrahydrocannabinol content: a kinetic model. Toxicol Appl Pharm 246:148–153CrossRefGoogle Scholar
  13. 13.
    Hostettmann K (2002) Tout savoir sur les plantes qui deviennent des drogues. Edition Favre S.A, LausanneGoogle Scholar
  14. 14.
    Dussy F (2005) Isolation of ∆9 THCA from hemp and analytical aspects concerning the determination of ∆9 THC in cannabis products. Forensic Sci Int 149:3–10CrossRefGoogle Scholar
  15. 15.
    Chou S, Ling Y, Yang M (2007) Determination of ∆9-tetrahydrocannabinol in indoor air as an indicator of marijuana cigarette smoking using adsorbent sampling and in-injector thermal desorption gas chromatography–mass spectrometry. Anal Chim Acta 598:103–109CrossRefGoogle Scholar
  16. 16.
    Hayakawa K, Mishima K, Nozako M, Hazekawa M, Ogata A, Fujioka M, Harada K, Mishima S, Orito K, Egashira N, Iwasaki K, Fujiwara M (2007) ∆9-Tetrahydrocannabinol (∆9-THC) prevents cerebral infarction via hypothalamic-independent hypothermia. Life Sci 80:1466–1471CrossRefGoogle Scholar
  17. 17.
    Backer B, Debrus B (2009) Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. J Chromatogr B 877:4115–4124CrossRefGoogle Scholar
  18. 18.
    Pellegrini M, Marchei E (2005) A rapid and simple procedure for the determination of cannabinoids in hemp food products by gas chromatography-mass spectrometry. J Pharm Biomed Anal 36:939–946CrossRefGoogle Scholar
  19. 19.
    Mechoulam R, Parker LA, Gallily R (2002) Cannabidiol: an overview of some pharmacological aspects. J Clin Pharmacol 42:11S–19SGoogle Scholar
  20. 20.
    Joy JE, Watson SJ, Benson J (1999) Marijuana and medicine: assessing the science base. National Academy of Science, WashingtonGoogle Scholar
  21. 21.
    Mechoulam R (1970) Marihuana chemistry. Science 168:1159–1166CrossRefGoogle Scholar
  22. 22.
    Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Amer Chem Soc 86(8):1646–1647CrossRefGoogle Scholar
  23. 23.
    Meylan WM, Howard PH (1997) Handbook of physical properties of organic chemicals. CRC, Boca RatonGoogle Scholar
  24. 24.
    Garrett RE, Hunt CA (1977) Physicochemical properties, solubility and protein binding of Δ9-tetrahydrocannabinol. J Pharm Sci 63(7):1056–1064CrossRefGoogle Scholar
  25. 25.
    Testa B (1995) Advances in drug research. Academic, San DiegoGoogle Scholar
  26. 26.
    Meylan WM, Howard PH (1995) Atom/fragment contribution method for estimating octanol-water partition coefficients. J Pharm Sci 84(1):83–92CrossRefGoogle Scholar
  27. 27.
    Mohamed N, Rahman Z, Gul W, Majumdar S, ElSohly MA, Repka MA (2009) Lipophilicity characterization of various prodrugs of delta-9-tetrahydrocannabinol (THC) using a reverse phase HPLC method and its comparison with software generated values. American Association of Pharmaceutical Scientists Annual Meeting and Exposition. Los Angeles, CA, November 2009Google Scholar
  28. 28.
    Laloup M, del Mar Ramirez Fernandez M, Wood M, De Boeck G, Henquet C, Maes V, Samyn N (2005) Quantitative analysis of Δ9-tetrahydrocannabinol in preserved oral fluid by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1082:15–24CrossRefGoogle Scholar
  29. 29.
    Teixeira H, Verstraete A, Proença P, Corte-Real F, Monsanto P, Nuno Vieira D (2007) Validated method for the simultaneous determination of Δ9-THC and Δ9-THC-COOH in oral fluid, urine and whole blood using solid-phase extraction and liquid chromatography–mass spectrometry with electrospray ionization. Forensic Sci International 170:148–155CrossRefGoogle Scholar
  30. 30.
    Molnar A, Lewis J, Doble P, Hansen G, Prolov T, Fu S (2012) A rapid and sensitive method for the identification of delta-9-tetrahydrocannabinol in oral fluid by liquid chromatography–tandem mass spectrometry. Forensic Sci International 215:92–96CrossRefGoogle Scholar
  31. 31.
    Pawliszyn J (2009) Handbook of solid phase microextraction. Chemical Industry, BeijingGoogle Scholar
  32. 32.
    Richter BE, Jones BA, Ezzell JL, Porter NL (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68(6):1033–1039CrossRefGoogle Scholar
  33. 33.
    Gambaro V, Acqua LD, Farè F, Froldi R, Saligari E, Tassoni G (2002) Determination of primary active constituents in cannabis preparations by high–resolution gas chromatography/flame ionization detection and high-performance liquid chromatography/UV detection. Anal Chim Acta 468:245–254CrossRefGoogle Scholar
  34. 34.
    Watanabe H, Tanaka H (1978) A non-ionic surfactant as a new solvent for liquid-liquid extraction of Zinc(II) with 1-(2-Pyridylazo)-2-naphthol. Talanta 25:585–589CrossRefGoogle Scholar
  35. 35.
    Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solutions. J Biol Chem 256:1604–1607Google Scholar
  36. 36.
    Quina FH, Hinze WL (1999) Surfactant-mediated cloud point extraction: an environmentally benign alternative separation approach. Ind Eng Chem Res 38:4150–4168CrossRefGoogle Scholar
  37. 37.
    Haddou B, Canselier JP, Gourdon C (2003) Purification of effluents by two-aqueous phase extraction. Chem Eng Res Des 81(Part A):1184–1192Google Scholar
  38. 38.
    Haddou B, Canselier JP, Gourdon C (2006) Cloud point extraction of phenol and benzyl alcohol from aqueous stream. Sep Purif Technol 50:114–121CrossRefGoogle Scholar
  39. 39.
    Haddou B, Taibi A, Bouberka Z, Bouabdesselam H, Derriche Z (2007) Separation ofneutral red and methylene blue from wastewater using two-aqueous phase extraction. Sep Sci Technol 42(12):2677–2691CrossRefGoogle Scholar
  40. 40.
    Haddou B, Guitri N, Debbab A, Gourdon C, Derriche Z (2011) Cloud point extraction of Orange II and Orange G using neutral and mixed micelles: comparative approach using experimental design. Sep Sci Technol 46(5):734–743CrossRefGoogle Scholar
  41. 41.
    Talbi Z, Haddou B, Bouberka Z, Derriche Z (2009) Simultaneous elimination of dissolved and dispersed pollution from cutting oil wastes using two aqueous phase extraction methods. J Hazard Mater 163(2–3):748–755CrossRefGoogle Scholar
  42. 42.
    Ghouas H, Haddou B, Bouabdesselam H, Bouberka Z, Derriche Z (2010) Elimination of fuel spills from effluent using cloud point extraction methods. J Hazard Mater 180:188–196CrossRefGoogle Scholar
  43. 43.
    Ghouas H, Haddou B, Kameche M, Derriche Z, Gourdon C (2012) Extraction of humic acid by coacervate: investigation of direct and back processes. J Hazard Mater 205–206:171–178CrossRefGoogle Scholar
  44. 44.
    Canselier JP, Gourdon C, Nogueira Duarte LJ, De Barros Neto EL, Haddou B, Gumila C (2007) Method of extracting organic and metallic pollutants. PCT/EP2007/053777, WO-2007-122158Google Scholar
  45. 45.
    Shen J, Shao X (2006) Determination of tobacco alkaloids by gas chromatography–mass spectrometry using cloud point extraction as a preconcentration. Step Anal Chim Acta 561:83–87CrossRefGoogle Scholar
  46. 46.
    Hung K, Chen B, Yu LE (2007) Cloud point extraction of selected polycyclic aromatic hydrocarbons by nonionic surfactants. Sep Purif Technol 57:1–10CrossRefGoogle Scholar
  47. 47.
    Maranhǎo T, Borgesa DLG, Veiga MAMS, Curtius AJ (2005) Cloud point extraction for the determination of cadmium and lead in biological samples by graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B 60:667–672CrossRefGoogle Scholar
  48. 48.
    Liu W, Zhao W, Chen J, Yang M (2007) A cloud point extraction approach using TritonX-100 for the separation and preconcentration of Sudan dyes in chili powder. Anal Chim Acta 605:41–45CrossRefGoogle Scholar
  49. 49.
    Chen J, Xiao S, Wu X, Fang K, Liu W (2005) Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Talanta 67:992–996CrossRefGoogle Scholar
  50. 50.
    Nogueira Duarte LJ, Canselier JP (2005) Cloud point, critical micelle concentration and HLB relationships for alcohol ethoxylates. Pharma Chem 4(3):36–39Google Scholar
  51. 51.
    da Silva T, De La Salles K, Canselier JP, Gourdon C (2005) Characterization of a two-aqueous phase system containing a non-ionic surfactant. J Disp Sci Technol 26:303–313CrossRefGoogle Scholar
  52. 52.
    Nogueira Duarte LJ, Canselier JP (2005) Oxo-alcohol ethoxylates: surface and thermodynamic properties and effect of various additives on the cloud point. Tenside Surf Deterg 42(5):299–306Google Scholar
  53. 53.
    Schott H, Royce AE (1983) Effect of inorganic additive on solutions of non-ionic surfactant VI: further cloud point relations. J Pharm Sci 73:793–799CrossRefGoogle Scholar
  54. 54.
    Kaa EZ (1989) Cannabis plants illicitly grown in Jutland (Denmark). Rechtsmedizin 102:367–375Google Scholar
  55. 55.
    De Zeeuw RA, Malingre TM, Merkus FWHM (1972) Tetrahydrocannabinolic acid, an important component in the evaluation of cannabis products. J Pharm Pharmacol 24:25CrossRefGoogle Scholar
  56. 56.
    Fairbairn JW, Liebmann JA (1973) The extraction and estimation of the cannabinoids in Cannabis sativa L and its products. J Pharm Pharmacol 25:150–154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Ameur
    • 1
  • B. Haddou
    • 1
  • Z. Derriche
    • 1
  • J. P. Canselier
    • 2
  • C. Gourdon
    • 2
  1. 1.Faculté des Sciences, Département de Chimie, Laboratoire de Physico Chimie des MatériauxU. S. T. OranOranAlgeria
  2. 2.Laboratoire de Génie ChimiqueUMR 5503, Campus INP-ENSIACETToulouseFrance

Personalised recommendations