Analytical and Bioanalytical Chemistry

, Volume 405, Issue 10, pp 3085–3089 | Cite as

Simultaneous chromatography and electrophoresis: two-dimensional planar separations

  • Peter R. Stevenson
  • Bret E. Dunlap
  • Paul S. Powell
  • Brae V. Petersen
  • Christopher J. Hatch
  • Hung Chan
  • Garret I. Still
  • Michael T. Fulton
  • Justin S. McKell
  • David C. Collins
Rapid Communication


Single-dimension separations are routinely coupled in series to achieve two-dimensional separations, yet little has been done to simultaneously exploit multiple dimensions during separation. In this work, simultaneous chromatography and electrophoresis is introduced and evaluated for its potential to achieve two-dimensional separations. In simultaneous chromatography and electrophoresis, chromatography occurs via capillary action while an orthogonal electric field concurrently promotes electrophoresis in a second dimension. A novel apparatus with a dual solvent reservoir was designed to apply the concurrent electric field. Various compounds were used to characterize the apparatus and technique, i.e., vitamins, amino acids, and dyes. Improved separation is reported with equivalent analysis times in comparison to planar chromatography alone. The feasibility of simultaneously employing chromatography and electrophoresis in two dimensions is discussed.


Separation of eight dyes is improved in comparison to (a) planar chromatography alone when employing (b) simultaneous chromatography and electrophoresis


Planar chromatography Amino acids Separations/instrumentation Electrophoresis 



Simultaneous chromatography and electrophoresis


  1. 1.
    Davis JM, Stoll DR, Carr PW (2008) Anal Chem 80:8122–8134CrossRefGoogle Scholar
  2. 2.
    Lisa M, Cifkova E, Holcapek M (2011) J Chromatogr A 1218:5146–5156CrossRefGoogle Scholar
  3. 3.
    Harvey DJ (2011) J Chromatogr B 879:1196–1225CrossRefGoogle Scholar
  4. 4.
    Khatib A, Hoek AC, Jinap S, Sarker MZI, Jaswir I, Verpoorte R (2010) J Liq Chromatogr Related Technol 33:214–224Google Scholar
  5. 5.
    Waldhier MC, Gruber MA, Dettmer K, Oefner PJ (2009) Anal Bioanal Chem 394:695–706CrossRefGoogle Scholar
  6. 6.
    Capraro J, Magni C, Fontanesi M, Budelli A, Duranti M (2008) LWT-Food Sci Technol 41:1011–1017CrossRefGoogle Scholar
  7. 7.
    Zhang ZX, Zhang XW, Li F (2010) Sci China Chem 53:1183–1189CrossRefGoogle Scholar
  8. 8.
    Svidritskii EP, Pashkova EB, Pirogov AV, Shpigun OA (2010) Anal Chem 65:287–292CrossRefGoogle Scholar
  9. 9.
    Goldschmidt R, Wolf W (2010) Anal Bioanal Chem 397:471–481CrossRefGoogle Scholar
  10. 10.
    Gorbunov AA, Vakhrushev AV (2010) J Chromatogr A 1217:4825–4833CrossRefGoogle Scholar
  11. 11.
    Im K, Park H, Lee S, Chang T (2009) J Chromatogr A 1216:4606–4610CrossRefGoogle Scholar
  12. 12.
    Dutriez T, Courtiade M, Thiébaut D, Dulot H, Hennion M (2010) Fuel 89:2338–2345CrossRefGoogle Scholar
  13. 13.
    Dutriez T, Courtiade M, Thiébaut D, Dulot H, Bertoncini F, Vial J, Hennion M (2009) J Chromatogr A 1216:2905–2912CrossRefGoogle Scholar
  14. 14.
    Khummueng W, Trenerry C, Rose G, Marriott PJ (2006) J Chromatogr A 1131:203–214CrossRefGoogle Scholar
  15. 15.
    Banerjee K, Patil SH, Dasgupta S, Oulkar DP, Patil SB, Savant R, Adsule PG (2008) J Chromatogr A 1190:350–357CrossRefGoogle Scholar
  16. 16.
    Miller JM (2005) Chromatography concepts and contrasts. Wiley, New JerseyGoogle Scholar
  17. 17.
    Haugaard G, Kroner TD (1948) J Am Chem Soc 70:2135–2137CrossRefGoogle Scholar
  18. 18.
    Svensson H, Brattsten I (1949) Arkiv Kemi Mineral Geol 1:401–411Google Scholar
  19. 19.
    Strain HH, Sullivan JC (1951) Anal Chem 23:816–823CrossRefGoogle Scholar
  20. 20.
    Burma DP (1953) Anal Chim Acta 9:518–524CrossRefGoogle Scholar
  21. 21.
    Sato TR, Norris WP, Strain HH (1952) Anal Chem 24:776–778CrossRefGoogle Scholar
  22. 22.
    Durrum EL (1951) J Am Chem Soc 73:4875–4880CrossRefGoogle Scholar
  23. 23.
    Tuckerman MM, Strain HH (1960) Anal Chem 32:695–698CrossRefGoogle Scholar
  24. 24.
    Sherma J, Strain HH (1962) Anal Chem 34:76–80CrossRefGoogle Scholar
  25. 25.
    Sato TR, Norris WP, Strain HH (1955) Anal Chem 27:521–525CrossRefGoogle Scholar
  26. 26.
    Sato TR, Kisieleski WE, Norris WP, Strain HH (1953) Anal Chem 25:438–446CrossRefGoogle Scholar
  27. 27.
    Strain HH (1952) Anal Chem 24:356–360CrossRefGoogle Scholar
  28. 28.
    van Ooij WJ (1973) J Chromatogr A 81:190–193CrossRefGoogle Scholar
  29. 29.
    Novotny L, Nurok D, Replogle RW, Hawkins FL, Santini RE (2006) Anal Chem 78:2823–2831CrossRefGoogle Scholar
  30. 30.
    Heiger DN (1992) High performance capillary elecrophoresis an introduction. Hewlett-Packard, FranceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter R. Stevenson
    • 1
  • Bret E. Dunlap
    • 1
  • Paul S. Powell
    • 1
  • Brae V. Petersen
    • 1
  • Christopher J. Hatch
    • 1
  • Hung Chan
    • 1
  • Garret I. Still
    • 1
  • Michael T. Fulton
    • 1
  • Justin S. McKell
    • 1
  • David C. Collins
    • 1
  1. 1.Department of ChemistryBrigham Young University—IdahoRexburgUSA

Personalised recommendations