Analytical and Bioanalytical Chemistry

, Volume 405, Issue 13, pp 4591–4605

Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest

  • Claudio Corradini
  • Claudia Lantano
  • Antonella Cavazza
Review

Abstract

Functional foods are one of the most interesting areas of research and innovation in the food industry. A functional food or functional ingredient is considered to be any food or food component that provides health benefits beyond basic nutrition. Recently, consumers have shown interest in natural bioactive compounds as functional ingredients in the diet owing to their various beneficial effects for health. Water-soluble fibers and nondigestible oligosaccharides and polysaccharides can be defined as functional food ingredients. Fructooligosaccharides (FOS) and inulin are resistant to direct metabolism by the host and reach the caecocolon, where they are used by selected groups of beneficial bacteria. Furthermore, they are able to improve physical and structural properties of food, such as hydration, oil-holding capacity, viscosity, texture, sensory characteristics, and shelf-life. This article reviews major innovative analytical developments to screen and identify FOS, inulins, and the most employed nonstarch carbohydrates added or naturally present in functional food formulations. High-performance anion-exchange chromatography with pulsed electrochemical detection (HPAEC-PED) is one of the most employed analytical techniques for the characterization of those molecules. Mass spectrometry is also of great help, in particularly matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is able to provide extensive information regarding the molecular weight and length profiles of oligosaccharides and polysaccharides. Moreover, MALDI-TOF-MS in combination with HPAEC-PED has been shown to be of great value for the complementary information it can provide. Some other techniques, such as NMR spectroscopy, are also discussed, with relevant examples of recent applications. A number of articles have appeared in the literature in recent years regarding the analysis of inulin, FOS, and other carbohydrates of interest in the field and they are critically reviewed.

Keywords

Fructooligosaccharides High-performance anion-exchange chromatography with pulsed electrochemical detection Inulin Matrix-assisted laser desorption/ionization time of flight-mass spectrometry Prebiotics 

References

  1. 1.
    Siró I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance. A review. Appetite 51:456–467CrossRefGoogle Scholar
  2. 2.
    Shahidi F (2009) Nutraceuticals and functional foods: whole versus processed foods. Trends Food Sci Technol 20:376–387CrossRefGoogle Scholar
  3. 3.
    Englyst HN, Hudson GJ (1996) The classification and measurement of dietary carbohydrates. Food Chem 57:15–21CrossRefGoogle Scholar
  4. 4.
    EFSA (2010) Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J 8(3):1462Google Scholar
  5. 5.
    Mann JI, Cummings JH (2009) Possible implication for health of the different definition of dietary fibre. Nutr Metab Cardiovasc Dis 19:226–229CrossRefGoogle Scholar
  6. 6.
    Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre rich by-products of food processing: characterisation, technological functionality and commercial applications. A review. Food Chem 124:411–421CrossRefGoogle Scholar
  7. 7.
    Westenbrink S, Brunt K, van der Kamp J-W (2012) Dietary fibre; challenges in production and use of food composition data. Food Chem. doi:10.1016/j.foodchem.2012.09.029
  8. 8.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412Google Scholar
  9. 9.
    Torres DPM, Gonçalves MP, Teixeira JA, Rodrigues LR (2010) Galactooligosaccharides: production, properties, applications and significance as prebiotics. Compr Rev Food Sci Food Saf 9:438–454CrossRefGoogle Scholar
  10. 10.
    Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16CrossRefGoogle Scholar
  11. 11.
    Modzelewska-Kapituła M, Kłębukowska L (2009) Investigation of the potential for using inulin HPX as a fat replacer in yoghurt production. Int J Dairy Technol 62:209–214CrossRefGoogle Scholar
  12. 12.
    González-Tomás L, Coll-Marqués J, Costell E (2008) Viscoelasticity of inulin starch-based dairy systems. Influence of inulin average chain length. Food Hydrocoll 22:1372–1380CrossRefGoogle Scholar
  13. 13.
    Corradini C, Corradini D, Huber CG, Bonn GK (1994) Synthesis of a polymeric-based stationary phase for carbohydrate separation by high-pH anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 685:213–220CrossRefGoogle Scholar
  14. 14.
    Trojanowicz M (2011) Recent developments in electrochemical flow detections–a review: Part II. Liquid chromatography. Anal Chim Acta 688:8–35CrossRefGoogle Scholar
  15. 15.
    Johnson DC, LaCourse WR (1995) Pulsed electrochemical detection of carbohydrates at gold electrodes following liquid chromatographic separation. J Chromatogr Libr 58:391–429CrossRefGoogle Scholar
  16. 16.
    Johnson DC, LaCourse WR (1992) Pulsed electrochemical detection at noble metal electrodes in liquid chromatography. Electroanalysis 4:367–380CrossRefGoogle Scholar
  17. 17.
    Koizumi K, Kubota Y, Ozaki H, Shigenobu K, Fukuda M, Tanimoto T (1992) J Chromatogr 595:340–345CrossRefGoogle Scholar
  18. 18.
    Li Z, Mou S, Liao W, Lu D (1996) Carbohydr Res 295:229–234CrossRefGoogle Scholar
  19. 19.
    Borromei C, Cavazza A, Merusi C, Corradini C (2009) Characterization and quantitation of short-chain fructooligosaccharides and inulooligosaccharides in fermented milks by high-performance anion-exchange chromatography with pulsed amperometric detection. J Sep Sci 32:3635–3642CrossRefGoogle Scholar
  20. 20.
    Abballe F, Toppazzini M, Campa C, Uggeri F, Paoletti S (2007) Study of molar response of dextrans in electrochemical detection. J Chromatogr A 1149:38–45CrossRefGoogle Scholar
  21. 21.
    Corradini C, Cavazza A, Bignardi C (2012) High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. Int J Carbohydr Chem 2012:487564Google Scholar
  22. 22.
    Raessler M, Wissuwa B, Breul A, Unger W, Grimm T (2008) Determination of water-extractable nonstructural carbohydrates, including inulin, in grass samples with high-performance anion exchange chromatography and pulsed amperometric detection. J Agric Food Chem 56:7649–7654CrossRefGoogle Scholar
  23. 23.
    Corradini C, Bianchi F, Matteuzzi D, Amoretti A, Rossi M, Zanoni S (2004) High-Performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin. J Chromatogr A 1054:165–173Google Scholar
  24. 24.
    Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S (2005) Fermentation of fructooligosaccharides, inulin by bifidobacteria: a comparative study of pure, fecal cultures. Appl Environ Microbiol 71:6150–6158CrossRefGoogle Scholar
  25. 25.
    Ishiguro Y, Onodera S, Benkeblia N, Shiomi N (2010) Variation of total FOS, total IOS, inulin and their related-metabolizing enzymes in burdock roots (Arctium lappa L.) stored under different temperatures. Postharvest Biol Technol 56:32–238CrossRefGoogle Scholar
  26. 26.
    Raccuia SA, Melilli MG (2010) Seasonal dynamics of biomass, inulin, and water-soluble sugars in roots of Cynara carduculus L. Field Crops Res 116:147–153CrossRefGoogle Scholar
  27. 27.
    Liu Z, Mouradov A, Smith KF, Spangenberg G (2011) An improved method for quantitative analysis of total fructans in plant tissues. Anal Biochem 418:253–259CrossRefGoogle Scholar
  28. 28.
    Bach V, Kidmose U, Bjørn GK, Edelenbos M (2012) Effects of harvest time and variety on sensory quality and chemical composition of Jerusalem artichoke (Helianthus tuberosus) tubers. Food Chem 133:82–89CrossRefGoogle Scholar
  29. 29.
    Chiavaro E, Vittadini E, Corradini C (2007) Physicochemical characterization and stability of inulin gels. Eur Food Res Technol 225:85–94CrossRefGoogle Scholar
  30. 30.
    Morris C, Morris GA (2012) The effect of inulin and fructooligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: a review. Food Chem 133:237–248CrossRefGoogle Scholar
  31. 31.
    van Arkel J, Vergauwen R, Sevenier R, Hakkert JC, van Laere A, Bouwmeester HJ, Koops AJ, van der Meer IM (2012) Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.). J Plant Physiol 169:1520–1529CrossRefGoogle Scholar
  32. 32.
    Stoop JM, Van Arkel J, Hakkert JC, Tyree C, Caimi PG, Koops AJ (2007) Developmental modulation of inulin accumulation in storage organs of transgenic maize and transgenic potato. Plant Sci 173:172–181CrossRefGoogle Scholar
  33. 33.
    Michalak M, Thomassen LV, Roytio H, Ouwehand AC, Meyer AS, Mikkelsen JD (2012) Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans in Pichia pastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans. Enzyme Microb Technol 50:121–129CrossRefGoogle Scholar
  34. 34.
    Rasmussen LE, Sǿrensen JF, Meyer AS (2010) Kinetics and substrate selectivity of a Triticum arstivum xylanase inhibitor (TAXI) resistant D11F/R122D variant of Bacillus subtilis XynA xylanase. J Biotechnol 146:207–214CrossRefGoogle Scholar
  35. 35.
    Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–450CrossRefGoogle Scholar
  36. 36.
    Hsu N-Y, Yang W-B, Wong C-H, Lee Y-C, Lee RT, Wang Y-S, Chen C-H (2007) Matrix-assisted laser desorption/ionization mass spectrometry of polysaccharides with 2’,4’6’-trihydroxyacetophenone as matrix. Rapid Commun Mass Spectrom 21:2137–2146CrossRefGoogle Scholar
  37. 37.
    Tzeng YK, Zhu Z, Chang HC (2009) Alkali-hydroxide-doped matrices for structural characterization of neutral underivatized oligosaccharides by MALDI time-of-flight mass spectrometry. J Mass Spectrom 44:375–383CrossRefGoogle Scholar
  38. 38.
    Rohmer M, Meyer B, Mank M, Stahl B, Bahr U, Karas M (2010) 3-aminoquinoline acting as matrix and derivatizing agent for MALDI MS analysis of oligosaccharides. Anal Chem 82:3719–3726CrossRefGoogle Scholar
  39. 39.
    Strupat K, Kovtoun V, Bui H, Viner R, Stafford G, Horning S (2009) MALDI produced ions inspected with lineari on trap-orbitrap hybrid analyzer. J Am Soc Mass Spectrom 20:1451–1463CrossRefGoogle Scholar
  40. 40.
    Guillard M, Gloerich J, Wessels HJCT, Morava E, Wevers RA, Lefeber DJ (2009) Automated measurement of permethylated serum n-glycans by MALDI-linear ion trap mass spectrometry. Carbohydr Res 344:1550–1557CrossRefGoogle Scholar
  41. 41.
    Lopez MG, Mancilla Margalli NA, Mendoza Diaz G (2003) Molecular structures of fructans from Agave tequilana weber var. azul. J Agric Food Chem 51:7835–7840CrossRefGoogle Scholar
  42. 42.
    Losso JN, Nakai S (1997) Molecular size of garlic fructooligosaccharides and fructopolysaccharides by matrix-assisted laser desorption ionization mass spectrometry. J Agric Food Chem 45:4342–4346CrossRefGoogle Scholar
  43. 43.
    Zaidel DNA, Arnous A, Holck J, Meyer AS (2011) Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet. J Agric Food Chem 59:11598–11607CrossRefGoogle Scholar
  44. 44.
    Wang J, Jiang GS, Vasanthan T, Sporns P (1999) MALDI-MS characterization of maltooligo/polysaccharides from debranched starch amylopectin of corn and barley. Starch/Staerke 51:243–248CrossRefGoogle Scholar
  45. 45.
    Okada H, Fukushi E, Yamamori A, Kawazoe N, Onodera S, Kawabata J, Shiomi N (2010) Novel fructopyranose oligosaccharides isolated from fermented beverage of plant extract. Carbohydr Res 345:414–418CrossRefGoogle Scholar
  46. 46.
    Okada H, Fukushi E, Yamamori A, Kawazoe N, Onodera S, Kawabata J, Shiomi N (2011) Isolation and structural confirmation of the oligosaccharides containing α-D-fructofuranoside linkages isolated from fermented beverage of plant extracts. Carbohydr Res 346:2633–2637CrossRefGoogle Scholar
  47. 47.
    Urías-Silvas JE, Cani PD, Delmée E, Neyrinck A, López MG, Delzenne M (2008) Physiological effects of dietary fructans extracted from Agave tequilana Gto and Dasylirion spp. Br J Nutr 99:254–261CrossRefGoogle Scholar
  48. 48.
    Arrizon J, Morel S, Gschaedler A, Monsan P (2010) Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chem 122:123–130CrossRefGoogle Scholar
  49. 49.
    Ravenscroft N, Cescutti P, Hearshaw MA, Ramsout R, Rizzo R, Timme EM (2009) Structural analysis of fructans from agave americana grown in South Africa for spirit production. J Agric Food Chem 57:3995–4003CrossRefGoogle Scholar
  50. 50.
    Linde D, Rodríguez-Colinas B, Estévez M, Poveda A, Plou FJ, Fernández Lobato M (2012) Analysis of neofructoligosaccharides production mediated by the extracellular β-fructofuranosidase from xanthophyllomyces dendrorhous. Bioresour Technol 109:123–130CrossRefGoogle Scholar
  51. 51.
    Haská L, Nyman M, Andersson R (2008) Distribution and characterisation of fructan in wheat milling fractions. J Cereal Sci 48:768–774CrossRefGoogle Scholar
  52. 52.
    Borromei C, Careri M, Cavazza A, Corradini C, Elviri L, Mangia A, Merusi C (2009) Evaluation of fructooligosaccharides and inulins as potentially health benefiting food ingredients by HPAEC-PED and MALDI-TOF MS. Int J Anal Chem 2009:530639Google Scholar
  53. 53.
    Albrecht S, van Muiswinkel GCJ, Schols HA, Voragen AGJ, Gruppen H (2009) Introducing capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the characterization of Konjac glucomannan oligosaccharides and their in vitro fermentation behavior. J Agric Food Chem 57:3867–3876CrossRefGoogle Scholar
  54. 54.
    Gullón P, González-Muñoz MJ, van Gool MP, Schols HA, Hirsch J, Ebringerová A, Parajó JC (2011) Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes. Bioresour Technol 102:6112–6119CrossRefGoogle Scholar
  55. 55.
    Nabarlatz D, Montane D, Kardosova A, Bekesova S, Hrıbalova V, Ebringerova A (2007) Almond shell xylooligosaccharides exhibiting immunostimulatory activity. Carbohydr Res 342:1122–1128CrossRefGoogle Scholar
  56. 56.
    Cano A, Palet C (2007) Xylooligosaccharide recovery from agricultural biomass waste treatment with enzymatic polymeric membranes and characterization of products with MALDI-TOF-MS. J Membr Sci 2918:96–105CrossRefGoogle Scholar
  57. 57.
    Yamagaki T, Mitsuishi Y, Nakanishi H (1998) Determination of structural isomers of xyloglucan octasaccharides using post-source decay fragment analysis in MALDI-TOF mass spectrometry. Tetrahedron Lett 39:4051–4054CrossRefGoogle Scholar
  58. 58.
    Ghedini Der Agopian R, Aparecida Soares C, Purgatto E, Cordenunsi BR, Lajolo FM (2008) Identification of fructooligosaccharides in different banana cultivars. J Agric Food Chem 56:3305–3310CrossRefGoogle Scholar
  59. 59.
    Ruiz-Matute AI, Rodrìguez-Sànchez S, Sanz ML, Martìnez-Castro I (2010) Detection of adulterations of honey with high fructose syrups from inulin by GC analysis. J Food Compos Anal 23:273–276CrossRefGoogle Scholar
  60. 60.
    Judprasong K, Tanjor S, Puwastien P, Sungpuag P (2011) Investigation of Thai plants for potential sources of inulin-type fructans. J Food Compos Anal 24:642–649CrossRefGoogle Scholar
  61. 61.
    Mannina L, Sobolev AP, Viel S (2012) Liquid state 1H high field NMR in food analysis. Progr Nucl Magn Reson Spectrosc 66:1–39CrossRefGoogle Scholar
  62. 62.
    Chandrashekar PM, Harish Prashanth KV, Venkatesh YP (2011) Isolation, structural elucidation and immunomodulatory activity of fructans from aged garlic extract. Phytochemistry 72:255–264CrossRefGoogle Scholar
  63. 63.
    Madhukumar MS, Muralikrishna G (2010) Structural characterisation and determination of prebiotic activity of purified xylo-oligosaccharides obtained from Bengal gram husk (Cicer arietinum L.) and wheat bran (Triticum aestivum). Food Chem 118:215–223CrossRefGoogle Scholar
  64. 64.
    Yang Z, Hu J, Zhao M (2011) Isolation and quantitative determination of inulin-type oligosaccharides in roots of Morinda officinalis. Carbohydr Polym 83:1997–2004CrossRefGoogle Scholar
  65. 65.
    Kristo E, Foo A, Hill AR, Corredig M (2011) Determination of inulin in milk using high-performance liquid chromatography with evaporative light scattering detection. J Dairy Sci 94:3316–3321CrossRefGoogle Scholar
  66. 66.
    Raessler M (2011) Sample preparation and current applications of liquid chromatography for the determination of non-structural carbohydrates in plants. Trends Anal Chem 30:1833–1843CrossRefGoogle Scholar
  67. 67.
    Fabrik I, Ĉmelík R, Bobáĭová J (2012) Analysis of free oligosaccharides by negative-ion electrospray ion trap tandem mass spectrometry in the presence of H2PO4 anions. Int J Mass Spectrom 309:88–96Google Scholar
  68. 68.
    Hernández-Hernández O, Calvillo I, Lebron-Aguilar R, Moreno FJ, Sanz ML (2012) Hydrophilic interaction liquid chromatography coupled to mass spectrometry for the characterization of prebiotic galactooligosaccharides. J Chromatogr A 1220:57–67CrossRefGoogle Scholar
  69. 69.
    Martínez-Villaluenga C, Cardelle-Cobas A, Corzo N, Olano A (2008) Study of galactooligosaccharide composition in commercial fermented milks. J Food Compos Anal 21:540–544CrossRefGoogle Scholar
  70. 70.
    Deutschmann R, Dekker RFH (2012) From plant biomass to bio-based chemicals: Latest developments in xylan research. Biotechnol Adv 30:1627–1640CrossRefGoogle Scholar
  71. 71.
    Samanta AK, Senania S, Kolte AP, Sridhar M, Sampath KT, Jayapal N, Devi A (2012) Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod Process 90:466–474CrossRefGoogle Scholar
  72. 72.
    Holck J, Lorentzen A, Vigsnæs LK, Licht TR, Mikkelsen JD, Meyer AS (2011) Feruloylated and nonferuloylated arabino-oligosaccharides from sugar beet pectin selectively stimulate the growth of bifidobacterium spp. in human fecal in vitro fermentations. J Agric Food Chem 59:6511–6519CrossRefGoogle Scholar
  73. 73.
    Westphal Y, Kühnel S, de Waard P, Hinz SWA, Schols HA, Voragen AGJ, Gruppen H (2010) Branched arabino-oligosaccharides isolated from sugar beet arabinan. Carbohydr Res 345:1180–1189CrossRefGoogle Scholar
  74. 74.
    Virkki L, Ndegwa Maina H, Johansson L, Tenkanen M (2008) New enzyme-based method for analysis of water-soluble wheat arabinoxylans. Carbohydr Res 343:521–529CrossRefGoogle Scholar
  75. 75.
    Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15CrossRefGoogle Scholar
  76. 76.
    Harris R, Lecumberri E, Mateos-aparicio I, Mengibar M, Heras A (2011) Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym 84:803–806CrossRefGoogle Scholar
  77. 77.
    de Britto D, de Moura MR, Aouada FA, Mattoso LHC, Assis OBG (2012) N, N, N-trimethyl chitosan nanoparticles as a vitamin carrier system. Food Hydrocoll 27:487–493CrossRefGoogle Scholar
  78. 78.
    Konecsni K, Low NH, Nickerson MT (2012) Chitosan-tripolyphosfate sub micron particles as the carrier of entrapped rutin. Food Chem 134:1175–1179CrossRefGoogle Scholar
  79. 79.
    Yang B, Nagendra Prasad K, Xie H, Lin S, Jiang Y (2011) Structural characteristic of oligosaccharides from soy sauce lees and their potential prebiotic effect on lactic acid bacteria. Food Chem 126:590–594CrossRefGoogle Scholar
  80. 80.
    Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–451CrossRefGoogle Scholar
  81. 81.
    Thomassen LV, Larsen DM, Mikkelsen JD, Meyer AS (2011) Definition and characterization of enzymes for maximal biocatalytic solubilization of prebiotic polysaccharides from potato pulp. Enzyme Microb Technol 49:289–297CrossRefGoogle Scholar
  82. 82.
    Forgo P, Kiss A, Korózs M, Rapi S (2013) Thermal degradation and consequent fragmentation of widely applied oligosaccharides. Microchem J 107:37–46CrossRefGoogle Scholar
  83. 83.
    Vankova K, Polakovic M (2010) Optimization of single-column chromatographic separation of fructooligosaccharides. Process Biochem 45:1325–1329CrossRefGoogle Scholar
  84. 84.
    Campos D, Betalleluz-Pallardel I, Chirinos R, Aguilar-Galvez A, Noratto G, Pedreschi R (2012) Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chem 135:1592–1599CrossRefGoogle Scholar
  85. 85.
    Cara C, Ruiz E, Carvalheiro F, Moura P, Ballesteros I, Castro E, Gírio F (2012) Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Ind Crop Prod 40:225–231CrossRefGoogle Scholar
  86. 86.
    Downes K, Terry LA (2010) A new acetonitrile-free mobile phase method for LC–ELSD quantification of fructooligosaccharides in onion (Allium cepa L.). Talanta 82:118–124CrossRefGoogle Scholar
  87. 87.
    Matìas J, Gonzàlez J, Royano L, Barrena RA (2011) Analysis of sugars by liquid chromatography-mass spectrometry in Jerusalem artichoke tubers for bioethanol production optimization. Biomass Bioenergy 35:2006–2012CrossRefGoogle Scholar
  88. 88.
    Manisseri C, Gudipati M (2010) Bioactive xylo-oligosaccharides from wheat bran soluble polysaccharides. Food Sci Technol 43:421–430Google Scholar
  89. 89.
    de Oliveira AJB, Gonçalves RAC, Chierrito TPC, dos Santos MM, de Souza LM, Gorin PAJ, Sassaki GL, Iacomini M (2011) Structure and degree of polymerisation of fructooligosaccharides present in roots and leaves of Stevia rebaudiana (Bert.) Bertoni. Food Chem 129:305–311CrossRefGoogle Scholar
  90. 90.
    Combo A, Aguedo M, Quiévy N, Danthine S, Goffin D, Jacquet N, Blecker C, Devaux J, Paquot M (2013) Characterization of sugar beet pectic-derived oligosaccharides obtained by enzymatic hydrolysis. Int J Biol Macromol 52:148–156CrossRefGoogle Scholar
  91. 91.
    Guo L, Liang Q, Du X (2011) Effects of molecular characteristics of tea polysaccharide in green tea on glass transitions of potato amylose, amylopectin and their mixtures. Food Hydrocoll 25:486–494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudio Corradini
    • 1
  • Claudia Lantano
    • 1
  • Antonella Cavazza
    • 1
  1. 1.Department of ChemistryUniversity of ParmaParmaItaly

Personalised recommendations