Analytical and Bioanalytical Chemistry

, Volume 405, Issue 10, pp 3205–3214 | Cite as

Rapid preparation of molecularly imprinted polymer by frontal polymerization

  • Dan-Dan Zhong
  • Xin Liu
  • Qian-Qian Pang
  • Yan-Ping HuangEmail author
  • Zhao-Sheng LiuEmail author
Original Paper


Frontal polymerization was successfully applied, for the first time, to obtain molecularly imprinted polymers (MIPs). The method provides a solvent-free polymerization mode, and the reaction can be completed in 30 min. By this approach, MIPs were synthesized using a mixture of levofloxacin (template), methacrylic acid, and divinylbenzene. The effect of template concentration and the amount of comonomer on the imprinting effect of the resulting MIPs was investigated. The textural and morphological parameters of the MIP particles were also characterized by mercury intrusion porosimetry, nitrogen adsorption isotherms, and scanning electron microscopy, providing evidence concerning median pore diameter, pore volumes, and pore size distributions. The levofloxacin-imprinted polymer formed in frontal polymerization mode showed high selectivity, with an imprinting factor of 5.78. The results suggest that frontal polymerization provides an alternative means to prepare MIPs that are difficult to synthesize and may open up new perspectives in the field of MIPs.


Frontal polymerization Molecularly imprinted polymer Molecular recognition Affinity Levofloxacin 



This work was supported by the National Natural Science Foundation of China (grant no. 21075090) and the Hundred Talents Program of the Chinese Academy of Sciences.

Supplementary material

216_2013_6722_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1903 kb)


  1. 1.
    Wulff G (1995) Angew Chem Int Ed Engl 34:1812–1832CrossRefGoogle Scholar
  2. 2.
    Mayes AG, Whitcombe MJ (2005) Adv Drug Deliv Rev 57:1742–1778CrossRefGoogle Scholar
  3. 3.
    Puoci F, Cirillo G, Curcio M, Parisi OI, Iemma F, Picci N (2011) Expert Opin Drug Deliv 8:1379–1393CrossRefGoogle Scholar
  4. 4.
    Shimizu KD, Stephenson CJ (2010) Curr Opin Chem Biol 10:743–750CrossRefGoogle Scholar
  5. 5.
    Haginaka J (2009) J Sep Sci 32:1548–1565CrossRefGoogle Scholar
  6. 6.
    Wulff G (2002) Chem Rev 102:1–27CrossRefGoogle Scholar
  7. 7.
    Wulff G, Liu J (2012) Acc Chem Res 45:239–247CrossRefGoogle Scholar
  8. 8.
    Turiel E, Martín-Esteban A (2010) Anal Chim Acta 668:87–99CrossRefGoogle Scholar
  9. 9.
    Abouzarzadeh A, Forouzani M, Jahanshahi M, Bahramifar N (2012) J Mol Recognit 25:404–413CrossRefGoogle Scholar
  10. 10.
    Zhao L, Ban L, Zhang QW, Huang YP, Liu ZS (2011) J Chromatogr A 1218:9071–9079CrossRefGoogle Scholar
  11. 11.
    Zhang L, Han F, Hu Y, Zheng P, Sheng X, Sun H, Song W, Lv Y (2012) Anal Chim Acta 729:36–44CrossRefGoogle Scholar
  12. 12.
    Guan G, Wang S, Zhou H, Zhang K, Liu R, Mei Q, Wang S, Zhang Z (2011) Anal Chim Acta 702:239–246CrossRefGoogle Scholar
  13. 13.
    Zhang W, He XW, Chen Y, Li WY, Zhang YK (2012) Biosens Bioelectron 31:84–89CrossRefGoogle Scholar
  14. 14.
    Bossi AM, Sharma PS, Montana L, Zoccatelli G, Laub O, Levi R (2012) Anal Chem 84:4036–4041CrossRefGoogle Scholar
  15. 15.
    Qin L, He XW, Yuan X, Li WY, Zhang YK (2011) Anal Bioanal Chem 399:3375–3385CrossRefGoogle Scholar
  16. 16.
    Saridakis E, Khurshid S, Govada L, Phan Q, Hawkins D, Crichlow GV, Lolis E, Reddy SM, Chayen NE (2011) Proc Natl Acad Sci USA 108:11081–11086CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Yang X, Chen X, Zhang M, Luo L, Peng M, Yao S (2011) Anal Bioanal Chem 401:2855–63CrossRefGoogle Scholar
  18. 18.
    Plewa A, Yusa S, Szuwarzyński M, Szczubiałka K, Morishima Y, Nowakowska M (2012) J Med Chem 55:8712–8720CrossRefGoogle Scholar
  19. 19.
    Chechilo KM, Khvilivitskii RYA, Enikolopyan NS (1972) Dokl Akad Nauk SSSR 205:1180–1181Google Scholar
  20. 20.
    Pojman JA (1991) J Am Chem Soc 113:6284–6286CrossRefGoogle Scholar
  21. 21.
    Crivello JV (2007) J Polym Sci Part A Polym Chem 45:4331–4340CrossRefGoogle Scholar
  22. 22.
    Mariani A, Fiori S, Chekanov Y, Pojman JA (2001) Macromolecules 34:6539–6541CrossRefGoogle Scholar
  23. 23.
    Bidali S, Fiori S, Malucelli G, Mariani A (2003) e-Polymers 60:1–12Google Scholar
  24. 24.
    Mariani A, Bidali S, Fiori S, Sangermano M, Malucelli G, Bongiovanni R, Priola A (2004) J Polym Sci Part A Polym Chem 42:2066–2072CrossRefGoogle Scholar
  25. 25.
    Danquah MK, Forde GM (2008) Chem Eng J 140:593–599CrossRefGoogle Scholar
  26. 26.
    Turner NW, Piletska EV, Karim K, Whitcombe M, Malecha M, Magan N, Baggiani C, Piletsky SA (2004) Biosens Bioelectron 20:1060–1067CrossRefGoogle Scholar
  27. 27.
    Urracaa JL, Carbajo MC, Torralvob MJ, González-Vázquezc J, Orellanad G, Moreno-Bondi MC (2008) Biosens Bioelectron 24:155–161CrossRefGoogle Scholar
  28. 28.
    O’Mahony J, Molinelli A, Nolan K, Smyth MR, Mizaikoff B (2006) Biosens Bioelectron 21:1383–1392CrossRefGoogle Scholar
  29. 29.
    Haginaka J, Futagami A (2008) J Chromatogr A 1185:258–262CrossRefGoogle Scholar
  30. 30.
    Sellergren B, Lepisto M, Mosbach K (1988) J Am Chem Soc 110:5853–5860CrossRefGoogle Scholar
  31. 31.
    Lin JM, Nakagama T, Uchiyama K, Hobo T (1997) J Pharm Biomed Anal 15:1351–1358CrossRefGoogle Scholar
  32. 32.
    Yu C, Mosbach K (1997) J Org Chem 62:4057–4064CrossRefGoogle Scholar
  33. 33.
    Zhang SJ, Huang YP, Liu ZS, Duan HQ (2011) Polym Adv Technol 22:286–292CrossRefGoogle Scholar
  34. 34.
    Svec F, Fréchet JMJ (1995) Chem Mater 7:707–715CrossRefGoogle Scholar
  35. 35.
    Yan QZ, Lu GD, Zhang WF, Ma XH, Ge CC (2007) Adv Funct Mater 17:3355–3362CrossRefGoogle Scholar
  36. 36.
    Sun HW, Qiao FX (2008) J Chromatogr A 1212:1–9CrossRefGoogle Scholar
  37. 37.
    Gao YB, Zhu GF, Fan J (2011) Chem Res Appl 23:980–984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of PharmacyTianjin Medical UniversityTianjinChina

Personalised recommendations