Analytical and Bioanalytical Chemistry

, Volume 405, Issue 8, pp 2451–2459 | Cite as

Automated method for analysis of tryptophan and tyrosine metabolites using capillary electrophoresis with native fluorescence detection

  • Christopher A. Dailey
  • Nicolas Garnier
  • Stanislav S. Rubakhin
  • Jonathan V. Sweedler
Original Paper

Abstract

Capillary electrophoresis (CE) with laser-induced native fluorescence (LINF) detection offers the ability to characterize low levels of selected analyte classes, depending on the excitation and emission wavelengths used. Here a new automated CE-LINF system that provides deep ultraviolet (DUV) excitation (224 nm) and variable emission wavelength detection was evaluated for the analysis of small molecule tryptophan- and tyrosine-related metabolites. The optimized instrument design includes several features that increase throughput, lower instrument cost and maintenance, and decrease complexity when compared with earlier systems using DUV excitation. Sensitivity is enhanced by using an ellipsoid detection cell to increase the fluorescence collection efficiency. The limits of detection ranged from 4 to 30 nmol/L for serotonin and tyrosine, respectively. The system demonstrated excellent linearity over several orders of magnitude of concentration and intraday precision from 1–11 % relative standard deviation (RSD). The instrument’s performance was validated via tryptophan and serotonin characterization using tissue extracts from the mammalian brain stem, with RSDs of less than 10 % for both metabolites. The flexibility and sensitivity offered by DUV laser excitation and tunable emission enables a broad range of small-volume measurements.

Keywords

Capillary electrophoresis Laser-induced native fluorescence Serotonin Automation High throughput 

References

  1. 1.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythei I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(suppl 1):603–610CrossRefGoogle Scholar
  2. 2.
    Xiao JF, Zhou B, Ressom HW (2012) Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt Chem 32:1–14CrossRefGoogle Scholar
  3. 3.
    Bharti SK, Roy R (2012) Quantitative 1H NMR spectroscopy. Trends Analyt Chem 35:5–26CrossRefGoogle Scholar
  4. 4.
    Lapainis T, Sweedler JV (2008) Contributions of capillary electrophoresis to neuroscience. J Chromatogr 1184(1-2):144–158CrossRefGoogle Scholar
  5. 5.
    Wallingford RA, Ewing AG (1987) Capillary zone electrophoresis with electrochemical detection. Anal Chem 59(14):1762–1766CrossRefGoogle Scholar
  6. 6.
    Jorgenson JW, Lukacs KD (1983) Capillary zone electrophoresis. Science 222(4621):266–272CrossRefGoogle Scholar
  7. 7.
    Chang HT, Yeung ES (1995) Determination of catecholamines in single adrenal medullary cells by capillary electrophoresis and laser-induced native fluorescence. Anal Chem 67(6):1079–1083CrossRefGoogle Scholar
  8. 8.
    Cheng YF, Dovichi NJ (1988) Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence. Science 242(4878):562–564CrossRefGoogle Scholar
  9. 9.
    Kautz RA, Lacey ME, Wolters AM, Foret F, Webb AG, Karger BL, Sweedler JV (2001) Sample concentration and separation for nanoliter-volume NMR spectroscopy using capillary isotachophoresis. J Am Chem Soc 123(13):3159–3160CrossRefGoogle Scholar
  10. 10.
    Liu CC, Zhang J, Dovichi NJ (2005) A sheath-flow nanospray interface for capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 19(2):187–192CrossRefGoogle Scholar
  11. 11.
    Azmitia EC (2010) Evolution of serotonin: Sunlight to suicide. In: Christian PM, Barry LJ (eds) Handbook of Behavioral Neuroscience, vol 21. Elsevier, pp 3–22Google Scholar
  12. 12.
    Shear JB (1999) Multiphoton-excited fluorescence. Anal Chem 71(17):598A–605ACrossRefGoogle Scholar
  13. 13.
    Li Q, Seeger S (2010) Autofluorescence detection in analytical chemistry and biochemistry. Appl Spectroscopy Rev 45(1):12–43CrossRefGoogle Scholar
  14. 14.
    Chattopadhyay A, Rukmini R, Mukherjee S (1996) Photophysics of a neurotransmitter: ionization and spectroscopic properties of serotonin. Biophys J 71(4):1952–1960CrossRefGoogle Scholar
  15. 15.
    Schulze P, Belder D (2009) Label-free fluorescence detection in capillary and microchip electrophoresis. Anal Bioanal Chem 393(2):515–525CrossRefGoogle Scholar
  16. 16.
    Lillard SJ, Yeung ES, McCloskey MA (1996) Monitoring exocytosis and release from individual mast cells by capillary electrophoresis with laser-induced native fluorescence detection. Anal Chem 68(17):2897–2904CrossRefGoogle Scholar
  17. 17.
    Yeung ES (1999) Study of single cells by using capillary electrophoresis and native fluorescence detection. J Chromatogr 830(2):243–262CrossRefGoogle Scholar
  18. 18.
    Gooijer C, Kok SJ, Ariese F (2000) Capillary electrophoresis with laser-induced fluorescence detection for natively fluorescent analytes. Analusis 28(8):679–685CrossRefGoogle Scholar
  19. 19.
    Zhang X, Sweedler JV (2001) Ultraviolet native fluorescence detection in capillary electrophoresis using a metal vapor NeCu laser. Anal Chem 73(22):5620–5624CrossRefGoogle Scholar
  20. 20.
    Zhang X, Stuart JN, Sweedler JV (2002) Capillary electrophoresis with wavelength-resolved laser-induced fluorescence detection. Anal Bioanal Chem 373(6):332–343CrossRefGoogle Scholar
  21. 21.
    Miao H, Rubakhin SS, Sweedler JV (2003) Analysis of serotonin release from single neuron soma using capillary electrophoresis and laser-induced fluorescence with a pulsed deep-UV NeCu laser. Anal Bioanal Chem 377(6):1007–1013CrossRefGoogle Scholar
  22. 22.
    Benturquia N, Couderc F, Sauvinet V, Orset C, Parrot S, Bayle C, Renaud B, Denoroy L (2005) Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection. Electrophoresis 26(6):1071–1079CrossRefGoogle Scholar
  23. 23.
    Fuller RR, Moroz LL, Gillette R, Sweedler JV (1998) Single neuron analysis by capillary electrophoresis with fluorescence spectroscopy. Neuron 20(2):173–181CrossRefGoogle Scholar
  24. 24.
    Timperman AT, Khatib K, Sweedler JV (1995) Wavelength-resolved fluorescence detection in capillary electrophoresis. Anal Chem 67(1):139–144CrossRefGoogle Scholar
  25. 25.
    Lee TT, Yeung ES (1992) High-sensitivity laser-induced fluorescence detection of native proteins in capillary electrophoresis. J Chromatogr 595(1-2):319–325CrossRefGoogle Scholar
  26. 26.
    Milofsky RE, Yeung ES (1993) Native fluorescence detection of nucleic acids and DNA restriction fragments in capillary electrophoresis. Anal Chem 65(2):153–157CrossRefGoogle Scholar
  27. 27.
    Chan KC, Muschik GM, Issaq HJ (2000) Solid-state UV laser-induced fluorescence detection in capillary electrophoresis. Electrophoresis 21(10):2062–2066CrossRefGoogle Scholar
  28. 28.
    Hapuarachchi S, Janaway GA, Aspinwall CA (2006) Capillary electrophoresis with a UV light-emitting diode source for chemical monitoring of native and derivatized fluorescent compounds. Electrophoresis 27(20):4052–4059CrossRefGoogle Scholar
  29. 29.
    Sluszny C, He Y, Yeung ES (2005) Light-emitting diode-induced fluorescence detection of native proteins in capillary electrophoresis. Electrophoresis 26(21):4197–4203CrossRefGoogle Scholar
  30. 30.
    Wu S, Dovichi NJ (1989) High-sensitivity fluorescence detector for fluorescein isothiocyanate derivatives of amino acids separated by capillary zone electrophoresis. J Chromatogr 480:141–155CrossRefGoogle Scholar
  31. 31.
    Lapainis T, Scanlan C, Rubakhin SS, Sweedler JV (2007) A multichannel native fluorescence detection system for capillary electrophoretic analysis of neurotransmitters in single neurons. Anal Bioanal Chem 387(1):97–105CrossRefGoogle Scholar
  32. 32.
    Zhang X, Fuller RR, Dahlgren RL, Potgieter K, Gillette R, Sweedler JV (2001) Neurotransmitter sampling and storage for capillary electrophoresis analysis. Fresenius J Anal Chem 369(3-4):206–211CrossRefGoogle Scholar
  33. 33.
    Bonnin C, Matoga M, Garnier N, Debroche C, de Vandiere B, Chaminade P (2007) 224 nm deep-UV laser for native fluorescence, a new opportunity for biomolecules detection. J Chromatogr 1156(1-2):94–100CrossRefGoogle Scholar
  34. 34.
    Debroche C, Crespeau H, Vandiere BD (2009) Optical device for light detector. Patent Application No. 10/596,340 assigned to FlowgeneGoogle Scholar
  35. 35.
    Park YH, Zhang X, Rubakhin SS, Sweedler JV (1999) Independent optimization of capillary electrophoresis separation and native fluorescence detection conditions for indolamine and catecholamine measurements. Anal Chem 71(21):4997–5002CrossRefGoogle Scholar
  36. 36.
    Squires LN, Jakubowski JA, Stuart JN, Rubakhin SS, Hatcher NG, Kim WS, Chen K, Shih JC, Seif I, Sweedler JV (2006) Serotonin catabolism and the formation and fate of 5-hydroxyindole thiazolidine carboxylic acid. J Biol Chem 281(19):13463–13470CrossRefGoogle Scholar
  37. 37.
    Schappler J, Staub A, Veuthey JL, Rudaz S (2008) Highly sensitive detection of pharmaceutical compounds in biological fluids using capillary electrophoresis coupled with laser-induced native fluorescence. J Chromatogr 1204(2):183–190CrossRefGoogle Scholar
  38. 38.
    Kok SJ, Kristenson EM, Gooijer C, Velthorst NH, Brinkman UAT (1997) Wavelength-resolved laser-induced fluorescence detection in capillary electrophoresis: naphthalenesulphonates in river water. J Chromatogr 771(1-2):331–341CrossRefGoogle Scholar
  39. 39.
    Neumann M, Herten DP, Dietrich A, Wolfrum J, Sauer M (2000) Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments. J Chromatogr 871(1-2):299–310CrossRefGoogle Scholar
  40. 40.
    Heller C (2001) Principles of DNA separation with capillary electrophoresis. Electrophoresis 22(4):629–643CrossRefGoogle Scholar
  41. 41.
    Zhang J, Yang M, Puyang X, Fang Y, Cook LM, Dovichi NJ (2001) Two-dimensional direct-reading fluorescence spectrograph for DNA sequencing by capillary array electrophoresis. Anal Chem 73(6):1234–1239CrossRefGoogle Scholar
  42. 42.
    Cheng YF, Wu S, Chen DY, Dovichi NJ (1990) Interaction of capillary zone electrophoresis with a sheath flow cuvette detector. Anal Chem 62(5):496–503CrossRefGoogle Scholar
  43. 43.
    Shippy SA, Jankowski JA, Sweedler JV (1995) Analysis of trace level peptides using capillary electrophoresis with UV laser-induced fluorescence. Anal Chim Acta 307(2-3):163–171CrossRefGoogle Scholar
  44. 44.
    Timperman AT, Oldenburg KE, Sweedler JV (1995) Native fluorescence detection and spectral differentiation of peptides containing tryptophan and tyrosine in capillary electrophoresis. Anal Chem 67(19):3421–3426CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christopher A. Dailey
    • 1
  • Nicolas Garnier
    • 2
  • Stanislav S. Rubakhin
    • 1
  • Jonathan V. Sweedler
    • 1
  1. 1.Department of Chemistry and the Beckman InstituteUniversity of IllinoisUrbanaUSA
  2. 2.Saint-BeauzireFrance

Personalised recommendations