Analytical and Bioanalytical Chemistry

, Volume 405, Issue 18, pp 5901–5914

Qualitative and quantitative analysis of poly(amidoamine) dendrimers in an aqueous matrix by liquid chromatography–electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)

  • A. Uclés
  • M. M. Ulaszewska
  • M. D. Hernando
  • M. J. Ramos
  • S. Herrera
  • E. García
  • A. R. Fernández-Alba
Original Paper

Abstract

This work introduces a liquid chromatography–electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)-based method for qualitative and quantitative analysis of poly(amidoamine) (PAMAM) dendrimers of generations 0 to 3 in an aqueous matrix. The multiple charging of PAMAM dendrimers generated by means of ESI has provided key advantages in dendrimer identification by assignation of charge state through high resolution of isotopic clusters. Isotopic distribution in function of abundance of isotopes 12C and 13C yielded valuable and complementarity data for confident characterization. A mass accuracy below 3.8 ppm for the most abundant isotopes (diagnostic ions) provided unambiguous identification of PAMAM dendrimers. Validation of the LC-ESI-QTOF-MS method and matrix effect evaluation enabled reliable and reproducible quantification. The validation parameters, limits of quantification in the range of 0.012 to 1.73 μM, depending on the generation, good linear range (R > 0.996), repeatability (RSD < 13.4 %), and reproducibility (RSD < 10.9 %) demonstrated the suitability of the method for the quantification of dendrimers in aqueous matrices (water and wastewater). The added selectivity, achieved by multicharge phenomena, represents a clear advantage in screening aqueous mixtures due to the fact that the matrix had no significant effect on ionization, with what is evidenced by an absence of sensitivity loss in most generations of PAMAM dendrimers.
Fig

Liquid chromatography–electrospray ionization-hybrid quadrupole/time of flight mass spectrometry (LC-ESI-QTOF-MS) based method for qualitative and quantitative analysis of PAMAM dendrimers in aqueous matrix

Keywords

PAMAM dendrimers Aqueous matrices Electrospray ionization Multicharged ions LC-ESI-QTOF-MS Quantification 

References

  1. 1.
    European Commission. Enterprise and Industry. Chemicals: REACH and nanomaterials. http://ec.europa.eu/enterprise/sectors/chemicals/reach/nanomaterials/index_en.htm
  2. 2.
    Nanjwadea BK, Bechraa HM, Derkara GK, Manvia FV, Nanjwadeb VK (2009) Eur J Pharm Sci 38:185–196CrossRefGoogle Scholar
  3. 3.
    Menjoge AR, Kannan RM, Tomalia DA (2010) Drug Discov Today 15:171–185CrossRefGoogle Scholar
  4. 4.
    Parveen S, Misra R, Sahoo SK (2012) Nanomed Nanotechnol 8:147–166CrossRefGoogle Scholar
  5. 5.
    Jain K, Kesharwani P, Gupta U, Jain NK (2010) Inter J Pharm 394:122–142CrossRefGoogle Scholar
  6. 6.
    Naha P, Davoren M, Casey A, Byrne HJ (2007) Environ Sci Technol 43:6864–6869CrossRefGoogle Scholar
  7. 7.
    Fako VE, Furgeson DY (2009) Adv Drug Deliv Rev 61:478–486CrossRefGoogle Scholar
  8. 8.
    Heiden TCK, Dengler E, Kao WJ, Heideman W, Peterson RE (2007) Toxicol Appl Pharmacol 225:70–79CrossRefGoogle Scholar
  9. 9.
    Petit AN, Eullaffroy P, Debenest T, Gagné F (2010) Aquat Toxicol 100:187–193CrossRefGoogle Scholar
  10. 10.
    Hernando MD, Rosenkranz P, Ulaszewska MM, Fernández-Cruz ML, Fernández-Alba AR, Navas JM (2012) Anal Bioanal Chem. doi:10.1007/s00216-012-6256-4
  11. 11.
    Caminade AM, Laurent R, Majoral JP (2005) Adv Drug Deliv Rev 57:2130–2146CrossRefGoogle Scholar
  12. 12.
    Biricova V, Laznickova A (2009) Bioorg Chem 37:185–192CrossRefGoogle Scholar
  13. 13.
    Suarez IJ, Rosal R, Rodriguez A, Uclés A, Fernández-Alba AR, Hernando MD, García-Calvo E (2011) Trends Anal Chem 30:492–506CrossRefGoogle Scholar
  14. 14.
    Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Anal Chem 83:4453–4488CrossRefGoogle Scholar
  15. 15.
    Ulaszewska MM, Hernando MD, Uclés A, Rosal R, Rodríguez A, Garcia E, Fernández-Alba AR (2012) In: Barceló D (ed) Analysis and risk of nanomaterials in environmental and food samples. The Netherlands, ElsevierGoogle Scholar
  16. 16.
    Giri J, Diallo MS, Goddard WA, Dalleska NF, Fang X, Tang Y (2009) Environ Sci Technol 43:5123–5129CrossRefGoogle Scholar
  17. 17.
    Mullen DG, Borgmeier EL, Desai AM (2010) Chemistry 16:10675–10678CrossRefGoogle Scholar
  18. 18.
    Cason CA, Fabré TA, Buhrlage A, Haik KL, Bullen HA (2012) Inter J Anal Chem. doi:10.1155/2012/341260
  19. 19.
    Giordanengo R, Mazarin M, Wu J, Peng L, Charles L (2007) Inter J Mass Spectrom 266:62–75CrossRefGoogle Scholar
  20. 20.
    Schwartz BL, Rockwood AL, Smith RD, Tomalia DA, Spindler R (1995) Rapid Commun Mass Spectrom 9:1552–1555CrossRefGoogle Scholar
  21. 21.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polym J 17:117–132CrossRefGoogle Scholar
  22. 22.
    Knochenmuss R, Lehmann E, Zenobi R (1998) Eur Mass Spectrom 4:421–427CrossRefGoogle Scholar
  23. 23.
    Schalley CA, Verhaelen C, Klarner FG, Hahn U, Vogtle F (2005) Angew Chem Int Ed 44:477–480CrossRefGoogle Scholar
  24. 24.
    Baytekin B, Werner N, Luppertz F, Engeser M, Bruggemannb J, Bitter S, Henkel R, Felder T, Schalley CA (2006) Inter J Mass Spectrom 249:138–148CrossRefGoogle Scholar
  25. 25.
    Martínez Bueno MJ, Uclés S, Hernando MD, Fernández-Alba AR (2011) Talanta 85:157–166CrossRefGoogle Scholar
  26. 26.
    Martínez Bueno MJ, Uclés S, Hernando MD, Dávoli E, Fernández-Alba AR (2011) Water Res 45:2331–2341CrossRefGoogle Scholar
  27. 27.
    Duncan MW, Roder H, Hunsucker SW (2008) Brief Funct Genomic Proteomic 7:355–370CrossRefGoogle Scholar
  28. 28.
    Walterová Z, Horský J (2011) Anal Chim Acta 693:82–88CrossRefGoogle Scholar
  29. 29.
    Cole RB (2011) Electrospray and MALDI Mass spectrometry, fundamentals, instrumentation, practicalities and biological applications, 2nd edn. Wiley, New YorkGoogle Scholar
  30. 30.
    Petrovic M, Barceló D (2007) Comprehensive analytical chemistry. Analysis, removal, effects and risk of pharmaceuticals in the water cycle. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Martínez Bueno MJ, Ulaszewska MM, Gomez MJ, Hernando MD, Fernández-Alba AR (2012) J Chromatogr A 1256:80–88CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Uclés
    • 1
  • M. M. Ulaszewska
    • 2
  • M. D. Hernando
    • 3
  • M. J. Ramos
    • 2
    • 4
  • S. Herrera
    • 2
  • E. García
    • 2
  • A. R. Fernández-Alba
    • 1
    • 2
  1. 1.Pesticide Residue Research Group, Department of Hydrogeology and Analytical ChemistryUniversity of AlmeríaAlmeríaSpain
  2. 2.IMDEA-Water (Instituto Madrileño de Estudios Avanzados-Agua), Parque Científico TecnológicoUniversity of AlcaláAlcalá de HenaresSpain
  3. 3.National Institute for Agricultural and Food Research and Technology-INIAMadridSpain
  4. 4.Department of Analytical Chemistry and Chemical EngineeringUniversity of AlcaláAlcalá de HenaresSpain

Personalised recommendations