Analytical and Bioanalytical Chemistry

, Volume 405, Issue 11, pp 3823–3830 | Cite as

Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes

  • Urszula Salaj-Kosla
  • Micheál D. Scanlon
  • Tobias Baumeister
  • Kawah Zahma
  • Roland Ludwig
  • Peter Ó Conghaile
  • Domhnall MacAodha
  • Dónal Leech
  • Edmond Magner
Original Paper


Nanoporous and planar gold electrodes were utilised as supports for the redox enzymes Aspergillus niger glucose oxidase (GOx) and Corynascus thermophilus cellobiose dehydrogenase (CtCDH). Electrodes modified with hydrogels containing enzyme, Os-redox polymers and the cross-linking agent poly(ethylene glycol)diglycidyl ether were used as biosensors for the determination of glucose and lactose. Limits of detection of 6.0 (±0.4), 16.0 (±0.1) and 2.0 (±0.1) μM were obtained for CtCDH-modified lactose and glucose biosensors and GOx-modified glucose biosensors, respectively, at nanoporous gold electrodes. Biofuel cells composed of GOx- and CtCDH-modified gold electrodes were utilised as anodes, together with Myrothecium verrucaria bilirubin oxidase (MvBOD) or Melanocarpus albomyces laccase as cathodes, in biofuel cells. A maximum power density of 41 μW/cm2 was obtained for a CtCDH/MvBOD biofuel cell in 5 mM lactose and O2-saturated buffer (pH 7.4, 0.1 M phosphate, 150 mM NaCl).


Nanoporous gold electrodes Mediated electron transfer Biosensor Bioanode Biofuel cell 



This work was supported by the European Union FP7 project, 3D-nanobiodevices (NMP4-SL-2009-229255) and the Programme for Third Level Institutions funded nanoscience programme, INSPIRE.


  1. 1.
    Magner E (1998) Analyst 123:1967–1970CrossRefGoogle Scholar
  2. 2.
    Heller A (1992) J Phys Chem 96:3579–3587CrossRefGoogle Scholar
  3. 3.
    Hanefeld U, Gardossi L, Magner E (2009) Chem Soc Rev 38:453–468CrossRefGoogle Scholar
  4. 4.
    Ghindilis AL, Atanasov P, Wilkins E (1997) Electroanal 9:661–674CrossRefGoogle Scholar
  5. 5.
    Schuhmann W (2002) Rev Mol Biotech 82:425–441CrossRefGoogle Scholar
  6. 6.
    Frew JE, Hill HAO (1988) European J Biochem 172:261–269CrossRefGoogle Scholar
  7. 7.
    Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I (1999) Anal Chim Acta 400:91–108CrossRefGoogle Scholar
  8. 8.
    Habermüller K, Mosbach M, Schuhmann W (2000) J Anal Chem 366:560–568CrossRefGoogle Scholar
  9. 9.
    Christenson A, Dimcheva N, Ferapontova EE, Gorton L, Ruzgas T, Stoica L, Shleev S, Yaropolov AI, Haltrich D, Thorneley RNF, Aust SD (2004) Electroanal 16:1074–1092CrossRefGoogle Scholar
  10. 10.
    Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Anal Chem 56(4):667–671CrossRefGoogle Scholar
  11. 11.
    Battaglini F, Calvo EJ (1994) J Chem Soc 90:987–995Google Scholar
  12. 12.
    Valkiainen M, Tuurala S, Smolander M, Kaukoniemi O-V (2012) In: Steinberger-Wilckens R, Lehnert W (eds) Innovations in fuel cell technologies. RSC Publishing,Google Scholar
  13. 13.
    Mano N, Mao F, Heller A (2002) J Am Chem Soc 124:12962–12963CrossRefGoogle Scholar
  14. 14.
    Mao F, Mano N, Heller A (2003) J Am Chem Soc 125:4951–4957CrossRefGoogle Scholar
  15. 15.
    Falk M, Blum Z, Shleev S Electrochim Acta 82:191–202Google Scholar
  16. 16.
    Mano N, Mao F, Heller A (2003) J Am Chem Soc 125:6588–6594CrossRefGoogle Scholar
  17. 17.
    Barrière F, Ferry Y, Rochefort D, Leech D (2004) Electrochem Commun 6:237–241CrossRefGoogle Scholar
  18. 18.
    Coman V, Ludwig R, Harreither W, Haltrich D, Gorton L, Ruzgas T, Shleev S (2010) Fuel Cells 10:9–16Google Scholar
  19. 19.
    Wilson R, Turner APF (1992) Biosens Bioelectron 7:165–185CrossRefGoogle Scholar
  20. 20.
    Coman V, Harreither W, Ludwig R, Haltrich D, Gorton L (2007) Chem Anal (Warsaw) 52:945–960Google Scholar
  21. 21.
    Martin Hallberg B, Henriksson G, Pettersson G, Divne C (2002) J Mol Biol 315:421–434CrossRefGoogle Scholar
  22. 22.
    Hallberg BM, Bergfors T, Bäckbro K, Pettersson G, Henriksson G, Divne C (2000) Structure 8:79–88CrossRefGoogle Scholar
  23. 23.
    Lindgren A, Larsson T, Ruzgas T, Gorton L (2000) J Electroanal Chem 494:105–113CrossRefGoogle Scholar
  24. 24.
    Ludwig R, Harreither W, Tasca F, Gorton L (2010) ChemPhysChem 11:2674–2697CrossRefGoogle Scholar
  25. 25.
    Katz E, Willner I, Kotlyar AB (1999) J Electroanal Chem 479:64–68CrossRefGoogle Scholar
  26. 26.
    Sakai H, Nakagawa T, Tokita Y, Hatazawa T, Ikeda T, Tsujimura S, Kano K (2009) Energ Environ Sci 2:133–138CrossRefGoogle Scholar
  27. 27.
    Wang X, Falk M, Ortiz R, Matsumura H, Bobacka J, Ludwig R, Bergelin M, Gorton L, Shleev S (2012) Biosens Bioelectron 31:219–225CrossRefGoogle Scholar
  28. 28.
    Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz J-P, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S (2010) PLoS One 5:e10476CrossRefGoogle Scholar
  29. 29.
    Seker E, Reed M, Begley M (2009) Mater 2:2188–2215CrossRefGoogle Scholar
  30. 30.
    Erlebacher J (2004) J Electrochem Soc 151:C614–C626CrossRefGoogle Scholar
  31. 31.
    Jenkins PA, Boland S, Kavanagh P, Leech D (2009) Bioelectrochem 76:162–168CrossRefGoogle Scholar
  32. 32.
    Bergmeyer HU (1974) In: Bergmeyer HU, Gawehn K (eds) Methods of enzymatic analysis Vol I. Verlag Chemie, Weinheim, pp 494–495Google Scholar
  33. 33.
    Harreither W, Sygmund C, Augustiin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) App Environ Microbiol 77:1804–1815CrossRefGoogle Scholar
  34. 34.
    Scanlon MD, Salaj-Kosla U, Belochapkine S, MacAodha D, Leech D, Ding Y, Magner E (2012) Langmuir 28:2251–2261CrossRefGoogle Scholar
  35. 35.
    Barton SC, Kim H-H, Binyamin G, Zhang Y, Heller A (2001) J Phys Chem B 105:11917–11921CrossRefGoogle Scholar
  36. 36.
    Mano N, Soukharev V, Heller A (2006) J Phys Chem B 110:11180–11187CrossRefGoogle Scholar
  37. 37.
    Gregg BA, Heller A (1991) J Phys Chem 95:5970–5975CrossRefGoogle Scholar
  38. 38.
    Stoica L, Ludwig R, Haltrich D, Gorton L (2005) Anal Chem 78(2):393–398CrossRefGoogle Scholar
  39. 39.
    Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Bioelectrochem 67:15–22CrossRefGoogle Scholar
  40. 40.
    Hale PD, Boguslavsky LI, Inagaki T, Karan HI, Lee HS, Skotheim TA, Okamoto Y (1991) Anal Chem 63:677–682CrossRefGoogle Scholar
  41. 41.
    Safina G, Ludwig R, Gorton L (2010) Electrochim Acta 55:7690–7695CrossRefGoogle Scholar
  42. 42.
    Boland S, Leech D (2012) Analyst 137:113–117CrossRefGoogle Scholar
  43. 43.
    Willner I, Katz E, Patolsky F, Buckmann AF (1998) J Chem Soci 2:1817–1822Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Urszula Salaj-Kosla
    • 1
  • Micheál D. Scanlon
    • 1
  • Tobias Baumeister
    • 1
  • Kawah Zahma
    • 2
  • Roland Ludwig
    • 2
  • Peter Ó Conghaile
    • 3
  • Domhnall MacAodha
    • 3
  • Dónal Leech
    • 3
  • Edmond Magner
    • 1
  1. 1.Department of Chemical and Environmental Sciences, Materials and Surface Science InstituteUniversity of LimerickLimerickIreland
  2. 2.Department of Food Science and Technology, Food Biotechnology LaboratoryUniversity of Natural Resources and Applied Life SciencesViennaAustria
  3. 3.School of Chemistry & Ryan InstituteNational University of Ireland GalwayGalwayIreland

Personalised recommendations