Analytical and Bioanalytical Chemistry

, Volume 405, Issue 11, pp 3813–3822 | Cite as

Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes

  • A. Carolina Torres
  • M. Emilia Ghica
  • Christopher M. A. Brett
Original Paper


A new and simple-to-prepare hypoxanthine biosensor has been developed using xanthine oxidase (XOD) immobilised on carbon electrode surfaces. XOD was immobilised by glutaraldehyde cross-linking on carbon film (CF) electrodes and on carbon nanotube (CNT) modified CF (CNT/CF). A comparison of the performance of the two configurations was carried out by the current response using amperometry at fixed potential; the best characteristics being exhibited by XOD/CNT/CF modified electrodes. The effects of electrolyte pH and applied potential were evaluated, and a proposal is made for the enzyme mechanism of action involving competition between regeneration of flavin adenine dinucleotide and reduction of hydrogen peroxide. Under optimised conditions, the determination of hypoxanthine was carried out at −0.2 V vs. a saturated calomel electrode (SCE) with a detection limit of 0.75 μM on electrodes with CNT and at −0.3 V vs. SCE with a detection limit of 0.77 μM on electrodes without CNT. The applicability of the biosensor was verified by performing an interference study, reproducibility and stability were investigated, and hypoxanthine was successfully determined in sardine and shrimp samples.


Hypoxanthine biosensor Xanthine oxidase Carbon film electrodes Carbon nanotubes Flavin adenine dinucleotide 



Financial support from Fundação para a Ciência e a Tecnologia (FCT), Portugal PTDC/QUI-QUI/116091/2009, POCH, POFC-QREN (co-financed by FSE and European Community Fund FEDER/COMPETE) and CEMUC® (Research Unit 285), Portugal, is gratefully acknowledged. A.C.T. acknowledges a grant from projects PTDC/QUI/65732/2006 and PTDC/QUI-QUI/116091/2009; M.E.G. thanks FCT for a postdoctoral fellowship SFRH/BPD/36930/2007.


  1. 1.
    Spieker LE, Ruschitzka FT, Lüscher TF, Noll G (2002) Eur J Heart Fail 4:403–410CrossRefGoogle Scholar
  2. 2.
    Terrence G (2012) Curr Opin Rheumatol 24:127–131CrossRefGoogle Scholar
  3. 3.
    Mu G, Luan F, Xu L, Hu F, Liu H, Gao Y (2012) Anal Methods 4:3386–3391CrossRefGoogle Scholar
  4. 4.
    Lazzarino G, Amorini AM, Di Pietro V, Tavazzi B (2011) Methods Mol Biol 708:99–117CrossRefGoogle Scholar
  5. 5.
    Khajehsharifi H, Pourbasheer E (2011) J Iran Chem Soc 8:113–1119CrossRefGoogle Scholar
  6. 6.
    Franska M, Labedzka M (2012) Int J Mass Spectrom 323:41–44CrossRefGoogle Scholar
  7. 7.
    Iqbal J, Lévesque SA, Sévigny J, Müller CE (2008) Elecrophoresis 29:3685–3693CrossRefGoogle Scholar
  8. 8.
    Lin Z, Sun J, Chen J, Guo L, Chen Y, Chen G (2008) Anal Chem 80:2826–2831CrossRefGoogle Scholar
  9. 9.
    Hu S, Liu C-C (1997) Electroanalysis 9:372–377CrossRefGoogle Scholar
  10. 10.
    Hu S, Xu C, Luo J, Luo J, Cui D (2000) Anal Chim Acta 412:55–61CrossRefGoogle Scholar
  11. 11.
    Oliveira-Brett AM, Silva LA, Farace G, Vadgama P, Brett CMA (2003) Bioelectrochemistry 59:49–56CrossRefGoogle Scholar
  12. 12.
    Lu SF (2003) Anal Sci 19:1309–1312CrossRefGoogle Scholar
  13. 13.
    Lawal AT, Adeloju SB (2012) Food Chem 15:2982–2987CrossRefGoogle Scholar
  14. 14.
    Ghosh Hazra S, Sarker D, Misra TN (1998) Sens Actuator B-Chem 53:58–62CrossRefGoogle Scholar
  15. 15.
    Kotzian P, Brázdilová P, Kalcher K, Vytras K (2005) Anal Lett 38:1099–1113CrossRefGoogle Scholar
  16. 16.
    Niu J, Lee JY (2000) Sens Actuator B-Chem 62:190–198CrossRefGoogle Scholar
  17. 17.
    Nakatani HS, Dos Santos LV, Pelegrine CP, Marques Gomes ST, Matsushita M, De Souza NE, Visentainer JV (2005) Am J Biochem Biotechnol 1:85–89CrossRefGoogle Scholar
  18. 18.
    Zhang J, Lei J, Pan R, Xue Y, Ju H (2010) Biosens Bioelectron 26:371–376CrossRefGoogle Scholar
  19. 19.
    Agüí L, Manso J, Yáñez-Sedeño P, Pingarrón JM (2006) Sens Actuator B-Chem 113:272–280CrossRefGoogle Scholar
  20. 20.
    Villalonga R, Diez P, Gamella M, Reviejo J, Pingarrón JM (2011) Electroanalysis 23:1790–1796CrossRefGoogle Scholar
  21. 21.
    Wang L, Yuan Z (2004) Anal Sci 20:635–638CrossRefGoogle Scholar
  22. 22.
    Balasubramaniam K, Burghard M (2006) Anal Bioanal Chem 385:452–468CrossRefGoogle Scholar
  23. 23.
    Wang J (2005) Electroanalysis 17:7–14CrossRefGoogle Scholar
  24. 24.
    Carvalho RC, Gouveia-Caridade C, Brett CMA (2010) Anal Bioanal Chem 398:1675–1685CrossRefGoogle Scholar
  25. 25.
    Rivas GA, Rubianes MD, Rodríguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Talanta 74:291–307CrossRefGoogle Scholar
  26. 26.
    Jeykumari DRS, Narayanan SS (2009) Analyst 134:1618–1622CrossRefGoogle Scholar
  27. 27.
    Mao L, Xu F, Xu Q, Jin L (2001) Anal Biochem 292:94–101CrossRefGoogle Scholar
  28. 28.
    Mao L, Yamamoto K (2000) Anal Chim Acta 415:143–150CrossRefGoogle Scholar
  29. 29.
    Pundir CS, Rooma D, Jagriti N, Sandeep S, Jyoti N, Shweta C (2012) J Food Biochem 36:21–27CrossRefGoogle Scholar
  30. 30.
    Kirgöz ÜA, Timur S, Wang J, Telefoncu A (2004) Electrochem Commun 6:913–916CrossRefGoogle Scholar
  31. 31.
    Zhang L, Lei J, Zhang J, Ding L, Ju H (2012) Analyst 137:3126–3131CrossRefGoogle Scholar
  32. 32.
    Brett CMA, Angnes L, Liess H-D (2001) Electroanalysis 13:765–769CrossRefGoogle Scholar
  33. 33.
    Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2009) Electrochim Acta 55:6239–6247CrossRefGoogle Scholar
  34. 34.
    Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S (2007) Chem Mater 19:5765–5772CrossRefGoogle Scholar
  35. 35.
    Ghica ME, Pauliukaite R, Fatibello-Filho O, Brett CMA (2009) Sens Actuators B-Chem 142:308–315CrossRefGoogle Scholar
  36. 36.
    Kuwabata S, Okamoto T, Kajiya Y, Yoneyama H (1995) Anal Chem 67:1684–1690CrossRefGoogle Scholar
  37. 37.
    Mello JV, Bello ME, Azevêdo WM, Souza JM, Diniz FB (1999) Electrochim Acta 44:2405–2412CrossRefGoogle Scholar
  38. 38.
    Kristensen D, Nylander T, Rasmussen JT, Paulsson M, Birsi KS (1998) Colloids Surf A 143:221–231CrossRefGoogle Scholar
  39. 39.
    Pauliukaite R, Brett CMA (2008) Electroanalysis 20:1275–1285CrossRefGoogle Scholar
  40. 40.
    Zhao J, O’Daly JP, Henkens RW, Stonehuerner J, Crumblisst AL (1996) Biosens Bioelectron 11:493–502CrossRefGoogle Scholar
  41. 41.
    Nishino T (1994) J Biochem 116:1–6Google Scholar
  42. 42.
    Gao Y, Shen C, Di J, Tu Y (2009) Mat Sci Eng C 29:2213–2216CrossRefGoogle Scholar
  43. 43.
    Rodrigues CG, Wedd AG (1991) J Electroanal Chem 312:131–140CrossRefGoogle Scholar
  44. 44.
    Metz S, Thiel W (2009) J Am Chem Soc 131:14885–14902CrossRefGoogle Scholar
  45. 45.
    Zuo S, Teng Y, Yuan H, Lan M (2008) Sens Actuators B-Chem 133:555–560CrossRefGoogle Scholar
  46. 46.
    Devi R, Yadav S, Pundir CS (2012) Analyst 137:754–759CrossRefGoogle Scholar
  47. 47.
    Torres AC, Ghica ME, Brett CMA (2012) Electroanalysis 24:1547–1553CrossRefGoogle Scholar
  48. 48.
    Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G (2004) N Engl J Med 350:1093–1103CrossRefGoogle Scholar
  49. 49.
    Clifford AJ, Story DL (1976) J Nutr 106:435–442Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Carolina Torres
    • 1
  • M. Emilia Ghica
    • 1
  • Christopher M. A. Brett
    • 1
  1. 1.Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations