Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 10, pp 3063–3074 | Cite as

Honey protein extraction and determination by mass spectrometry

  • Lee Suan Chua
  • Jun You Lee
  • Giek Far Chan
Review

Abstract

There are relatively limited studies on the protein of honey samples mainly because of the low amount of protein in honey (0.1–0.5 %), the difficulty in extracting honey protein from the sugar-rich environment, and the hindrance of protein characterization by conventional approaches. Several protein extraction methods such as mechanical (ultrafiltration and ultracentrifugation) and chemical (precipitation) techniques have been applied to different types of honey samples. Most of these studies reported the quantity and molecular size of honey protein from gel electrophoresis, but were unable to identify and characterize the protein. This limitation might be due to the low capacity of analytical equipment in those days. Although different precipitants have also been used, not all them are compatible with mass spectrometric methods during downstream analysis. As a result, the sample preparation step is essential in order to confidently characterize the low and varied amount of honey protein. Nowadays, honey protein is getting attention from researchers because of its potential activity in pharmacological applications. Therefore, honey protein extraction and determination by mass spectrometry are critically reviewed in order to stimulate further honey protein research.

Figure

Flow of protein extraction and identification from honey samples

Keywords

Honey protein Protein extraction Mass spectrometry Database search 

References

  1. 1.
    White JW (1957) Bee World 38:57–66Google Scholar
  2. 2.
    Marshall T, Williams KM (1987) Anal Biochem 167:301–303CrossRefGoogle Scholar
  3. 3.
    Girolamo FD, D’Amato A, Righetti PG (2012) J Proteomics 75:3688–3693CrossRefGoogle Scholar
  4. 4.
    Ferreres F, Garcia-Viguera C, Tomas-Lorento F, Tomas-Barberan FA (1993) J Sci Food Agric 61:121–123CrossRefGoogle Scholar
  5. 5.
    Bauer L, Kohlich A, Hirschwehr R, Siemann U, Ebner H, Scheiner O, Kraft D, Ebner C (1996) J Allergy Clin Immunol 97:65–73CrossRefGoogle Scholar
  6. 6.
    Lee DC, Lee SY, Cha SH, Choi YS, Rhee HI (1998) Korean J Food Sci 30:1–5Google Scholar
  7. 7.
    Won SR, Lee DC, Ko SH, Kim JW, Rhee HI (2008) Food Res Int 41:952–956CrossRefGoogle Scholar
  8. 8.
    Simuth J, Bilikova K, Kovacova E, Kuzmova Z, Schroder W (2004) J Agric Food Chem 52:2154–2158CrossRefGoogle Scholar
  9. 9.
    Thomas R (2001) Spectroscopy 16:28–37Google Scholar
  10. 10.
    Ji QC, Rodila R, El-Shourbagy TA (2007) J Chromatogr B 847:133–141CrossRefGoogle Scholar
  11. 11.
    Jagdish T, Joseph I (2004) J Agric Food Chem 52:3237–3243CrossRefGoogle Scholar
  12. 12.
    Yilmaz H, Kufrevloglu OI (2003) GIDA 28:155–157Google Scholar
  13. 13.
    White JW, Kushnir I (1967) J Apicult Res 6:163–178Google Scholar
  14. 14.
    White JW, Rudyj ON (1978) J Apicult Res 17:234–238Google Scholar
  15. 15.
    White JW, Winters K (1989) J Assoc Off Anal Chem 72:907–911Google Scholar
  16. 16.
    White JW (1992) J Assoc Off Anal Chem 75:543–548Google Scholar
  17. 17.
    Cienfuegos E, Casar I, Morales P (1997) J Apicult Res 36:169–179Google Scholar
  18. 18.
    Association of Official Analytical Chemists (1990) AOAC official method 991.41. Official methods of analysis, 15th edn. AOAC, Washington DCGoogle Scholar
  19. 19.
    Korth W, Ralston J (2002) Techniques for the detection of adulterated honey, Rural Industries Research and Development Corporation. Barton, AustraliaGoogle Scholar
  20. 20.
    Gonzalez Paramas AM, Gomez Barez JA, Marcos CC, Garcia-Villanova RJ, Sanchez JS (2006) Food Chem 95:148–156CrossRefGoogle Scholar
  21. 21.
    Rebane R, Herodes K (2008) J Agric Food Chem 56:10716–10720CrossRefGoogle Scholar
  22. 22.
    Iglesias MT, Lorenzo CD, Polo MDC, Martin-Alvarez PJ, Pueyo E (2004) J Agric Food Chem 52:84–89CrossRefGoogle Scholar
  23. 23.
    Anklam EA (1998) Food Chem 63:549–562CrossRefGoogle Scholar
  24. 24.
    von der Ohe W, Dustmann JH, von der Ohe K (1991) Dtsch Lebensm Rundsch 87:383–386Google Scholar
  25. 25.
    Cometto PM, Faye PF, Naranjo RD, Rubio MA, Aldao MAJ (2003) J Agric Food Chem 51:5079–5087CrossRefGoogle Scholar
  26. 26.
    Hermosin I, Chicon RM, Cabezudo MD (2003) Food Chem 83:263–268CrossRefGoogle Scholar
  27. 27.
    Nozal MJ, Bernal JL, Toribio ML, Diego JC, Ruiz A (2004) J Chromatogr A 1047:137–146CrossRefGoogle Scholar
  28. 28.
    Cotte JF, Casabianca H, Giroud B, Albert M, Lheritier J, Grenier-Loustalot MF (2004) Anal Bioanal Chem 378:1342–1350CrossRefGoogle Scholar
  29. 29.
    Berlitz HD, Grosch W, Schieberle P (2009) Food chemistry, 4th edn. Springer, LeipzigGoogle Scholar
  30. 30.
    Baroni MV, Chiabrando GA, Costa C, Wunderlin DA (2002) J Agric Food Chem 50:1362–1367CrossRefGoogle Scholar
  31. 31.
    Peiren N, de Graaf DC, Vanrobaeys F, Danneels EL, Devreese B, Beeumen JV, Jacobs FJ (2008) Toxicon 52:72–83CrossRefGoogle Scholar
  32. 32.
    Babacan S, Rand AG (2005) J Food Sci 70:C413–C418CrossRefGoogle Scholar
  33. 33.
    Vit P, Pulcini P (1996) J Apicult Res 35:57–62Google Scholar
  34. 34.
    Pontoh J, Low NH (2002) Insect Biochem Mol Biol 32:679–690CrossRefGoogle Scholar
  35. 35.
    White JW, Kushnir I (1967) J Apicult Res 6:69–89Google Scholar
  36. 36.
    Schepartz AI, Subers MH (1964) Biochim Biophys Acta 85:228–237Google Scholar
  37. 37.
    White JW, Kushnir I (1966) Anal Biochem 16:302–313CrossRefGoogle Scholar
  38. 38.
    Jintanart W, Takeshi Y, Hiroyuki N, Kim YM, Natsuko S, Mamoru N, Okuyama M, Mori H, Saji O, Chanchao C, Wongsiri S, Surarit R, Svasti J, Chiba S, Kimura A (2006) Biosci Biotechnol Biochem 70:2889–2898CrossRefGoogle Scholar
  39. 39.
    Huber RE, Mathison RD (1976) Can J Biochem 54(1976):153–164Google Scholar
  40. 40.
    Cho NC (1994) Korean Biochem J 27:509–513Google Scholar
  41. 41.
    Ohashi K, Natori S, Kubo T (1999) Eur J Biochem 265:127–133CrossRefGoogle Scholar
  42. 42.
    Sporns P (1992) In: Hui YH (ed) Encyclopedia of food science and technology, vol 2. Wiley, New YorkGoogle Scholar
  43. 43.
    White JW (1978) Adv Food Res 24:287–364CrossRefGoogle Scholar
  44. 44.
    White JW (1975) In: Crane E (ed) Honey: a comprehensive study. Heinemann, LondonGoogle Scholar
  45. 45.
    Rinaudo MT, Ponzetto C, Vidano C, Marletto F (1973) Comp Biochem Physiol 46B:253–256Google Scholar
  46. 46.
    Fujita T, Kozuka-Hata H, Uno Y, Nishikori K, Morioka M, Oyama M, Kubo T (2010) Biochem Biophys Res Comm 397:740–744CrossRefGoogle Scholar
  47. 47.
    Won SR, Li CY, Kim JW, Rhee HI (2009) Food Chem 113:1334–1338CrossRefGoogle Scholar
  48. 48.
    Callesen AK, Madsen JS, Vach W, Kruse TA, Mogensen O, Jensen ON (2009) Proteomics 9:1428–1441CrossRefGoogle Scholar
  49. 49.
    Reiz B, Li L (2010) J Am Soc Mass Spectrom 21:1596–1605CrossRefGoogle Scholar
  50. 50.
    Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN (2007) Mass Spectrom Rev 26:657–671CrossRefGoogle Scholar
  51. 51.
    Afiuni-Zadeh S, Guo X, Gholamhassan A, Lankmayr E (2011) Talanta 85:1835–1841CrossRefGoogle Scholar
  52. 52.
    Xue YJ, Liu J, Pursley J, Unger S (2006) J Chromatogr B 831:213–222CrossRefGoogle Scholar
  53. 53.
    Mitchell TJ, Irvine L, Scoular RHM (1955) Analyst 80:620–622CrossRefGoogle Scholar
  54. 54.
    Nelson JM, Cohn DJ (1924) J Biol Chem 61:193–224Google Scholar
  55. 55.
    Papadakis PE (1929) J Biol Chem 83:561–568Google Scholar
  56. 56.
    Padovan GJ, Rodrigues LP, Leme IA, Jong DD, Marchini JS (2007) Eurasian J Anal Chem 2:134–141Google Scholar
  57. 57.
    AOAC (2010) Official method 998.12. Official methods of analysis. Association of Official Analytical Chemists, Washington DCGoogle Scholar
  58. 58.
    Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R (2003) J Chromatogr B 785:263–275CrossRefGoogle Scholar
  59. 59.
    Kong FJ, Oyanagi A, Komatsu S (2010) Biochim Biophys Acta 1804:124–136CrossRefGoogle Scholar
  60. 60.
    Li J, Fang Y, Zhang L, Begna D (2011) J Insect Physiol 57:372–384CrossRefGoogle Scholar
  61. 61.
    Steinhorn G, Sims IM, Carnachan SM, Carr AJ, Schlothauer R (2011) Food Chem 128:949–956CrossRefGoogle Scholar
  62. 62.
    Kubota M, Tsuji M, Nishimoto M, Wongchawalit J, Okuyama M, Mori H, Matsui H, Surarit R, Svasti J, Kimura A, Chiba S (2004) Biosci Biotechnol Biochem 68:2346–2352CrossRefGoogle Scholar
  63. 63.
    Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Plant Sci 176:99–104CrossRefGoogle Scholar
  64. 64.
    Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Proteomics 5:2497–2507CrossRefGoogle Scholar
  65. 65.
    Jermyn MA, Yeow YM (1975) Aust J Plant Physiol 2:501–531CrossRefGoogle Scholar
  66. 66.
    van Holst GJ, Clarke AE (1985) Anal Biochem 148:446–450CrossRefGoogle Scholar
  67. 67.
    Gane AM, Craik D, Munro SLA, Hoelett GJ, Clarke AE, Bacic A (1995) Carbohydr Res 277:67–85CrossRefGoogle Scholar
  68. 68.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275Google Scholar
  69. 69.
    Herriott RM (1941) Proc Soc Exp Biol Med 46:642–644Google Scholar
  70. 70.
    Wu H (1920) J Biol Chem 43:189–220Google Scholar
  71. 71.
    da C Azeredo L, Azeredo MAA, de Souza SR, Dutra VML (2003) Food Chem 80:249–254Google Scholar
  72. 72.
    Neurath AR (1966) Experientia 22:290CrossRefGoogle Scholar
  73. 73.
    Kuno H, Kihara HK (1967) Nature 215:974–975CrossRefGoogle Scholar
  74. 74.
    Vallejo CG, Lagunas R (1970) Anal Biochem 138:141–143Google Scholar
  75. 75.
    Lo C, Stelson H (1972) Anal Biochem 45:331–336CrossRefGoogle Scholar
  76. 76.
    Wessel D, Flugge UI (1984) Anal Biochem 138:141–143CrossRefGoogle Scholar
  77. 77.
    Makkar HPS, Sharma OP, Negi SS (1980) Anal Biochem 104:124–126CrossRefGoogle Scholar
  78. 78.
    Horikawa S, Ogawara H (1979) Anal Biochem 97:116–119CrossRefGoogle Scholar
  79. 79.
    Rauh M (2012) J Chromatogr B 883–884:59–67CrossRefGoogle Scholar
  80. 80.
    Sundqvist G, Stenvall M, Berglund H, Ottosson J, Brumer H (2007) J Chromatogr B 852:188–194CrossRefGoogle Scholar
  81. 81.
    Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Electrophoresis 20:601–605CrossRefGoogle Scholar
  82. 82.
    Matros A, Kaspar S, Witzel K, Mock HP (2011) Phytochem 72:963–974CrossRefGoogle Scholar
  83. 83.
    Yeung YG, Nieves E, Angeletti RH, Stanley ER (2008) Anal Biochem 382:135–137CrossRefGoogle Scholar
  84. 84.
    Norris JL, Porter NA, Caprioli RM (2003) Anal Biochem 75:6642–6647Google Scholar
  85. 85.
    Chen EI, McClatchy D, Park SK, Yates JR III (2008) Anal Biochem 80:8694–8701Google Scholar
  86. 86.
    Perkins PD, Fischer SM (2008) Peptide derivatization method to increase fragmentation information from MS/MS spectra. US Patent Application US 2008/0026479 Google Scholar
  87. 87.
    Delahunty C, Yates JR III (2005) Methods 35:248–255CrossRefGoogle Scholar
  88. 88.
    Arsene CG, Ohlendorf R, Burkitt W, Pritchard C, Henrion A, O’Connor G, Bunk DM, Guttler B (2008) Anal Biochem 80:4154–4160Google Scholar
  89. 89.
    Agger SA, Marney LC, Hoofnagie AN (2010) Clin Chem 56:1804–1813CrossRefGoogle Scholar
  90. 90.
    Proc JL, Kuzyk MA, Hardie DB, Yang J, Smith DS, Jackson AM, Parker CE, Borchers CH (2010) J Proteome Res 9:5422–5437CrossRefGoogle Scholar
  91. 91.
    Matysiak J, Schmelzer CEH, Neubert RHH, Kokot ZJ (2011) J Pharm Biomed Anal 54:273–278CrossRefGoogle Scholar
  92. 92.
    Ren D, Ratnaswamy G, Beierle J, Treuheit MJ, Brems DN, Bondarenko PV (2009) Int J Biol Macromol 44:81–85CrossRefGoogle Scholar
  93. 93.
    Peiren N, Vanrobaeys F, de Graaf DC, Devreese B, Beeumen JV, Jacobs FJ (2005) Biochim Biophys Acta 1752:1–5CrossRefGoogle Scholar
  94. 94.
    Fang CY, Chen HY, Wang M, Chen PL, Chang CF, Chen LS, Shen CH, Ou WC, Tsai MD, Hsu PH, Chang D (2010) Virol 402:164–176CrossRefGoogle Scholar
  95. 95.
    Johnson D, Orlando R (2011) J Biomol Tech 22(Suppl):S57–S58Google Scholar
  96. 96.
    Wu R, Hu L, Wang F, Ye M, Zou H (2008) J Chromatogr 1184:369–392CrossRefGoogle Scholar
  97. 97.
    Tanaka N, Kimura H, Tokuda D, Hosoya K, Ikegami T, Ishizuka N, Minakuchi H, Nakanishi K, Shintani Y, Furuno M, Cabrera K (2004) Anal Biochem 76:1273–1281Google Scholar
  98. 98.
    Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR (2002) Anal Chem 74:1650–1657CrossRefGoogle Scholar
  99. 99.
    Wolters DA, Washburn MP, Yates JR (2001) Anal Chem 73:5683–5690CrossRefGoogle Scholar
  100. 100.
    Link AJ, Eng J, Schirltz DM, Carmack E, Mize GJ, Morris DR, Garvick BM, Yates JR III (1999) Nat Biotechnol 17:676–682CrossRefGoogle Scholar
  101. 101.
    Gilar M, Olivova P, Daly AE, Gebler JC (2005) J Sep Sci 28:1694–1703CrossRefGoogle Scholar
  102. 102.
    Scevchenko A (1996) Proc Natl Acad Sci 93:14440–14445CrossRefGoogle Scholar
  103. 103.
    Alomirah HF, Alli I, Konishi Y (2000) J Chromatogr A 893:1–21CrossRefGoogle Scholar
  104. 104.
    Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A, Schoofs L (2004) J Chromatogr B 803:3–16CrossRefGoogle Scholar
  105. 105.
    John H, Walden M, Schafer S, Genz S, Forssmann WG (2004) Anal Bioanal Chem 378:883–897CrossRefGoogle Scholar
  106. 106.
    Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Mol Cell Proteomics 6:1868–1884CrossRefGoogle Scholar
  107. 107.
    Bachi A, Bonaldi T (2008) J Proteomics 71:357–367CrossRefGoogle Scholar
  108. 108.
    Wilm M (2009) Proteomics 9:4590–4605CrossRefGoogle Scholar
  109. 109.
    Schmelzer CE, Schops R, Ulbrich-Hofmann R, Neubert RH, Raith K (2004) J Chromatogr A 1055:87–92CrossRefGoogle Scholar
  110. 110.
    Tang K, Allman SL, Jones RB, Chen CH (1993) Anal Chem 65:2164–2166CrossRefGoogle Scholar
  111. 111.
    Gonnet F, Lemaitre G, Waksman G, Tortajada J (2003) Proteome Sci 1:1–7CrossRefGoogle Scholar
  112. 112.
    Karas M, Kruger R (2003) Chem Rev 103:427–440CrossRefGoogle Scholar
  113. 113.
    Francese S, Lambardi D, Mastrobuoni G, la Marca G, Moneti G, Turillazzi S (2009) J Am Soc Mass Spectrom 20:112–123CrossRefGoogle Scholar
  114. 114.
    Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJ, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto JL, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Nat Biotechnol 27:633–641CrossRefGoogle Scholar
  115. 115.
    Blonder J, Conrads TP, Veenstra TD (2004) Expert Rev Proteomics 1:153–163CrossRefGoogle Scholar
  116. 116.
    Blonder J, Chan KC, Issaq HJ, Veenstra TD (2006) Nat Protoc 1:2784–2790CrossRefGoogle Scholar
  117. 117.
    Fortin T, Salvador A, Charrier JP, Lenz C, Bettsworth F, Lacoux X, Choquet-Kastylevsky G, Lemoine J (2009) Anal Chem 81:9343–9352CrossRefGoogle Scholar
  118. 118.
    Keller A, Nesvizhskii AI, Kolker E, Abersold R (2002) Anal Chem 74:5383–5392CrossRefGoogle Scholar
  119. 119.
    Nesvizhskii AI, Keller A, Kolker E, Abersold R (2003) Anal Chem 75:4646–4658CrossRefGoogle Scholar
  120. 120.
    Cottrell JS (2011) J Proteomics 74:1842–1851CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Metabolites Profiling Laboratory, Institute of Bioproduct DevelopmentUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Nanoporous Materials for Biological Application Research Group, Faculty of Bioscience and BioengineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations