Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 9, pp 2857–2867 | Cite as

Carbon and nitrogen isotope analysis of atrazine and desethylatrazine at sub-microgram per liter concentrations in groundwater

  • Kathrin Schreglmann
  • Martina Hoeche
  • Sibylle Steinbeiss
  • Sandra Reinnicke
  • Martin ElsnerEmail author
Original Paper

Abstract

Environmental degradation of organic micropollutants is difficult to monitor due to their diffuse and ubiquitous input. Current approaches—concentration measurements over time, or daughter-to-parent compound ratios—may fall short, because they do not consider dilution, compound-specific sorption characteristics or alternative degradation pathways. Compound-specific isotope analysis (CSIA) offers an alternative approach based on evidence from isotope values. Until now, however, the relatively high limits for precise isotope analysis by gas chromatography—isotope ratio mass spectrometry (GC-IRMS) have impeded CSIA of sub-microgram-per-liter scale micropollutant concentrations in field samples. This study presents the first measurements of C and N isotope ratios of the herbicide atrazine and its metabolite desethylatrazine at concentrations of 100 to 1,000 ng/L in natural groundwater samples. Solid-phase extraction and preparative HPLC were tested and validated for preconcentration and cleanup of groundwater samples of up to 10 L without bias by isotope effects. Matrix interferences after solid-phase extraction could be greatly reduced by a preparative HPLC cleanup step prior to GC-IRMS analysis. Sensitivity was increased by a factor of 6 to 8 by changing the injection method from large-volume to cold-on-column injection on the GC-IRMS system. Carbon and nitrogen isotope values of field samples showed no obvious correlation with concentrations or desethylatrazine-to-atrazine ratios. Contrary to expectations, however, δ 13 C values of desethylatrazine were consistently less negative than those of atrazine from the same sites. Potentially, this line of evidence may contain information about further desethylatrazine degradation. In such a case, the common practice of using desethylatrazine-to-atrazine ratios would underestimate natural atrazine degradation.

Keywords

Compound-specific isotope analysis Pesticides Micropollutants Field samples On-column injection 

Notes

Acknowledgments

We thank Martin Kralik and Franko Humer (Environment Agency Austria) as well as the Bavarian Water Authorities for enabling access to sampling sites and Michael Stöckl for help during sampling. This work was supported by the Helmholtz Initiative and Networking Fund and by the FNR (C09/SR/02).

References

  1. 1.
    Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378(2):283–300CrossRefGoogle Scholar
  2. 2.
    Annable WK, Frape SK, Shouakar-Stash O, Shanoff T, Drimmie RJ, Harvey FE (2007) 37Cl, 15N, 13C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants. Appl Geochem 22(7):1530–1536CrossRefGoogle Scholar
  3. 3.
    Hunkeler D, Meckenstock RU, Sherwood Lollar B, Schmidt T, Wilson J, Schmidt T, Wilson J (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA) (trans: Development OoRa). US EPA, OklahomaGoogle Scholar
  4. 4.
    Thullner M, Centler F, Richnow H-H, Fischer A (2012) Quantification of organic pollutant degradation in contaminated aquifers using compound specific stable isotope analysis: review of recent developments. Org Geochem 42(12):1440–1460CrossRefGoogle Scholar
  5. 5.
    Melander L, Saunders WH (1980) Reaction rates of isotopic molecules. Wiley, New YorkGoogle Scholar
  6. 6.
    Hofstetter TB, Schwarzenbach RP, Bernasconi SM (2008) Assessing transformation processes of organic compounds using stable isotope fractionation. Environ Sci Technol 42(21):7737–7743CrossRefGoogle Scholar
  7. 7.
    Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39(18):6896–6916CrossRefGoogle Scholar
  8. 8.
    Meyer AH, Penning H, Elsner M (2009) C and N isotope fractionation suggests similar mechanisms of microbial atrazine transformation despite involvement of different enzymes (AtzA and TrzN). Environ Sci Technol 43(21):8079–8085. doi: 10.1021/es9013618 CrossRefGoogle Scholar
  9. 9.
    Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12(11):2005–2031CrossRefGoogle Scholar
  10. 10.
    Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SAB, Stams AJM, Schlömann M, Richnow H-H, Vogt C (2008) Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ Sci Technol 42(12):4356–4363CrossRefGoogle Scholar
  11. 11.
    Brand WA (1996) High precision isotope ratio monitoring techniques in mass spectrometry. J Mass Spectrom 31(3):225–235CrossRefGoogle Scholar
  12. 12.
    Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A 842:351–371CrossRefGoogle Scholar
  13. 13.
    Blessing M, Jochmann M, Schmidt T (2008) Pitfalls in compound-specific isotope analysis of environmental samples. Anal Bioanal Chem 390(2):591–603CrossRefGoogle Scholar
  14. 14.
    Jochmann MA, Blessing M, Haderlein SB, Schmidt TC (2006) A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds. Rapid Commun Mass Spectrom 20(24):3639–3648CrossRefGoogle Scholar
  15. 15.
    SherwoodLollar B, Hirschorn SK, Chartrand MMG, Lacrampe-Couloume G (2007) An approach for assessing total instrumental uncertainty in compound-specific carbon isotope analysis: implications for environmental remediation studies. Anal Chem 79(9):3469–3475CrossRefGoogle Scholar
  16. 16.
    Pooley KE, Blessing M, Schmidt TC, Haderlein SB, MacQuarrie KTB, Prommer H (2009) Aerobic biodegradation of chlorinated ethenes in a fractured bedrock aquifer: quantitative assessment by compound-specific isotope analysis (CSIA) and reactive transport modeling. Environ Sci Technol 43(19):7458–7464CrossRefGoogle Scholar
  17. 17.
    Hunkeler D, Abe Y, Broholm MM, Jeannottat S, Westergaard C, Jacobsen CS, Aravena R, Bjerg PL (2011) Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR. J Contam Hydrol 119(1–4):69–79CrossRefGoogle Scholar
  18. 18.
    Sherwood Lollar B, Slater GF, Sleep B, Witt M, Klecka GM, Harkness M, Spivack J (2001) Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at Area 6, Dover Air Force Base. Environ Sci Technol 35:261–269CrossRefGoogle Scholar
  19. 19.
    Richnow HH, Meckenstock RU, Reitzel LA, Baun A, Ledin A, Christensen TH (2003) In situ biodegradation determined by carbon isotope fractionation of aromatic hydrocarbons in an anaerobic landfill leachate plume (Vejen, Denmark). J Contam Hydrol 64(1–2):59–72CrossRefGoogle Scholar
  20. 20.
    Bergmann FD, Abu Laban NMFH, Meyer AH, Elsner M, Meckenstock RU (2011) Dual (C, H) isotope fractionation in anaerobic low molecular weight (poly)aromatic hydrocarbon (PAH) degradation: potential for field studies and mechanistic implications. Environ Sci Technol 45(16):6947–6953. doi: 10.1021/es201096j CrossRefGoogle Scholar
  21. 21.
    Mancini SA, Lacrampe-Couloume G, Jonker H, Van Breukelen BM, Groen J, Volkering F, Sherwood Lollar B (2002) Hydrogen isotopic enrichment: an indicator of biodegradation at a petroleum hydrocarbon contaminated field site. Environ Sci Technol 36:2464–2470CrossRefGoogle Scholar
  22. 22.
    Rosell M, Barcelo D, Rohwerder T, Breuer U, Gehre M, Richnow HH (2007) Variations in 13C/12C and D/H enrichment factors of aerobic bacterial fuel oxygenate degradation. Environ Sci Technol 41(6):2036–2043CrossRefGoogle Scholar
  23. 23.
    Youngster L, Rosell M, Richnow H, Häggblom M (2010) Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions. Appl Microbiol Biotechnol 88(1):309–317. doi: 10.1007/s00253-010-2730-0 CrossRefGoogle Scholar
  24. 24.
    Gray JR, Lacrampe-Couloume G, Gandhi D, Scow KM, Wilson RD, Mackay DM, Sherwood Lollar B (2002) Carbon and hydrogen isotopic fractionation during biodegradation of methyl tert-butyl ether. Environ Sci Technol 36(9):1931–1938CrossRefGoogle Scholar
  25. 25.
    Gauchotte C, O’Sullivan G, Simon D, M. Kalin R (2009) Development of an advanced on-line position-specific stable carbon isotope system and application to methyl  tert -butyl ether. Rapid Commun Mass Spectrom 23(19):3183–3193CrossRefGoogle Scholar
  26. 26.
    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077. doi: 10.1126/science.1127291 CrossRefGoogle Scholar
  27. 27.
    Keppner L, Kirschbaum B (eds) (2008) Grundwasser in Deutschland. BerlinGoogle Scholar
  28. 28.
    Tappe W, Groeneweg J, Jantsch B (2002) Diffuse atrazine pollution in German aquifers. Biodegradation 13(1):3–10CrossRefGoogle Scholar
  29. 29.
    Park JH, Feng YC, Ji PS, Voice TC, Boyd SA (2003) Assessment of bioavailability of soil-sorbed atrazine. Appl Environ Microbiol 69(6):3288–3298CrossRefGoogle Scholar
  30. 30.
    Rodriguez CJ, Harkin JM (1997) Degradation of atrazine in subsoils, and groundwater mixed with aquifer sediments. Bull Environ Contam Toxicol 59:728–735CrossRefGoogle Scholar
  31. 31.
    Smith D, Alvey S, Crowley DE (2005) Cooperative catabolic pathways within an atrazine degrading enrichment culture isolated from soil. FEMS Microbiol Ecol 53:265–273CrossRefGoogle Scholar
  32. 32.
    Radosevich M, Traina SJ, Hao YL, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol 61(1):297–302Google Scholar
  33. 33.
    Rodríguez CJ, Harkin JM (1997) Degradation of atrazine in subsoils, and groundwater mixed with aquifer sediments. Bull Environ Contam Toxicol 59(5):728–735CrossRefGoogle Scholar
  34. 34.
    Schwab A, Splichal P, Banks M (2006) Persistence of atrazine and alachlor in ground water aquifers and soil. Water Air Soil Pollut 171(1):203–235. doi: 10.1007/s11270-005-9037-2 CrossRefGoogle Scholar
  35. 35.
    Schottler SP, Eisenreich SJ, Capel PD (1994) Atrazine, alachlor, and cyanazine in a large agricultural river system. Environ Sci Technol 28(6):1079–1089. doi: 10.1021/es00055a017 CrossRefGoogle Scholar
  36. 36.
    Ballantine, LG, et al (eds) Triazine herbicides: risk assessment (1998) ACS Symposium Series, vol 683. American Chemical Society. doi: 10.1021/bk-1998-0683
  37. 37.
    Seffernick JL, Wackett LP (2001) Rapid evolution of bacterial catabolic enzymes: a case study with atrazine chlorohydrolase. Biochemistry 40(43):12747–12753CrossRefGoogle Scholar
  38. 38.
    Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36(2–3):211–222. doi: doi:10.1111/j.1574-6941.2001.tb00842.x CrossRefGoogle Scholar
  39. 39.
    Wackett L, Sadowsky M, Martinez B, Shapir N (2002) Biodegradation of atrazine and related S-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol V58(1):39–45CrossRefGoogle Scholar
  40. 40.
    Meyer AH, Penning H, Lowag H, Elsner M (2008) Precise and accurate compound specific carbon and nitrogen isotope analysis of atrazine: critical role of combustion oven conditions. Environ Sci Technol 42(21):7757–7763CrossRefGoogle Scholar
  41. 41.
    Reinnicke S, Juchelka D, Steinbeiss S, Meyer AH, Hilkert A, Elsner M (2012) Gas chromatography-isotope ratio mass spectrometry (GC-IRMS) of recalcitrant target compounds: performance of different combustion reactors and strategies for standardization. Rapid Commun Mass Spectrom 26(9):1053–1060CrossRefGoogle Scholar
  42. 42.
    Hartenbach AE, Hofstetter TB, Tentscher PR, Canonica S, Berg M, Schwarzenbach RP (2008) Carbon, hydrogen, and nitrogen isotope fractionation during light-induced transformations of atrazine. Environ Sci Technol 42(21):7751–7756CrossRefGoogle Scholar
  43. 43.
    Morasch B, Richnow HH, Schink B, Meckenstock RU (2001) Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: mechanistic and environmental aspects. Appl Environ Microbiol 67(10):4842–4849CrossRefGoogle Scholar
  44. 44.
    Vogt C, Cyrus E, Herklotz I, Schlosser D, Bahr A, Herrmann S, Richnow H-H, Fischer A (2008) Evaluation of toluene degradation pathways by two-dimensional stable isotope fractionation. Environ Sci Technol 42(21):7793–7800CrossRefGoogle Scholar
  45. 45.
    Berg M, Mueller SR, Schwarzenbach RP (1995) Simultaneous determination of triazines including atrazine and their major metabolites hydroxyatrazine, desethylatrazine, and deisopropylatrazine in natural waters. Anal Chem 67(11):1860–1865CrossRefGoogle Scholar
  46. 46.
    Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25(17):2538–2560. doi: 10.1002/rcm.5129 Google Scholar
  47. 47.
    Coplen TB, Krouse HR, Boehlke JK (1992) Reporting of nitrogen-isotope abundances. Pure Appl Chem 64:907–908CrossRefGoogle Scholar
  48. 48.
    Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491Google Scholar
  49. 49.
    Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519CrossRefGoogle Scholar
  50. 50.
    Mol HGJ, Janssen H-G, Cramers CA, Brinkman UAT (1996) Large-volume injection in gas chromatographic trace analysis using temperature-programmable (PTV) injectors. TrAC Trends Anal Chem 15(4):206–214. doi: 10.1016/0165-9936(96)00011-8 CrossRefGoogle Scholar
  51. 51.
    Schomburg G, Husmann H, Rittmann R (1981) “Direct” (on-column) sampling into glass capillary columns: comparative investigations on split, splitless and on-column sampling. J Chromatogr A 204:85–96. doi: 10.1016/s0021-9673(00)81642-8 CrossRefGoogle Scholar
  52. 52.
    Coplen TB, Bohlke JK, De Bievre P, Ding T, Holden NE, Hopple JA, Krouse HR, Lamberty A, Peiser HS, Revesz K, Rieder SE, Rosman KJR, Roth E, Taylor PDP, Vocke RD, Xiao YK (2002) Isotope-abundance variations of selected elements—(IUPAC Technical Report). Pure Appl Chem 74(10):1987–2017CrossRefGoogle Scholar
  53. 53.
    Spahr S, Huntscha S, Bolotin J, Maier MP, Elsner M, Hollender J, Hofstetter TB (2013) Compound-specific isotope analysis of benzotriazole and its derivatives. Anal Bioanal Chem. doi: 10.1007/s00216-012-6526-1
  54. 54.
    Meyer AH, Dybala-Defratyka A, Alaimo PJ, Geronimo I, Sanchez AD, Cramer CJ, Elsner M (2013) Cytochrome P450-Catalyzed Dealkylation of Atrazine by Rhodococcus sp. strain NI86/21 Involves Hydrogen Atom Transfer rather than Single Electron Transfer; submitted to J. Am. Chem. Soc.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kathrin Schreglmann
    • 1
  • Martina Hoeche
    • 1
  • Sibylle Steinbeiss
    • 1
  • Sandra Reinnicke
    • 1
  • Martin Elsner
    • 1
    Email author
  1. 1.Helmholtz Zentrum München, German Research Center for Environmental HealthInstitute of Groundwater EcologyNeuherbergGermany

Personalised recommendations