Analytical and Bioanalytical Chemistry

, Volume 405, Issue 13, pp 4467–4476

Characterizing Vaccinium berry Standard Reference Materials by GC‐MS using NIST spectral libraries

  • Mark S. Lowenthal
  • Nirina R. Andriamaharavo
  • Stephen E. Stein
  • Karen W. Phinney
Original Paper
  • 358 Downloads

Abstract

A gas chromatography–mass spectrometry (GC-MS)-based method was developed for qualitative characterization of metabolites found in Vaccinium fruit (berry) dietary supplement Standard Reference Materials (SRMs). Definitive identifications are provided for 98 unique metabolites determined among six Vaccinium-related SRMs. Metabolites were enriched using an organic liquid/liquid extraction, and derivatized prior to GC-MS analysis. Electron ionization (EI) fragmentation spectra were searched against EI spectra of authentic standards compiled in the National Institute of Standards and Technology’s mass spectral libraries, as well as spectra selected from the literature. Metabolite identifications were further validated using a retention index match along with prior probabilities and were compared with results obtained in a previous effort using collision-induced dissociation (CID) MS/MS datasets from liquid chromatography coupled to mass spectrometry experiments. This manuscript describes a nontargeted metabolite profile of Vaccinium materials, compares results among related materials and from orthogonal experimental platforms, and discusses the feasibility and development of using mass spectral library matching for nontargeted metabolite identification.

Keywords

Vaccinium GC-MS Qualitative analysis Reference materials Mass spectral library Metabolites 

Supplementary material

216_2012_6610_MOESM1_ESM.pdf (810 kb)
ESM 1(PDF 810 kb)

References

  1. 1.
    Stein S (2012) Anal Chem 84:7274–7282CrossRefGoogle Scholar
  2. 2.
    Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) J Exp Bot 56:219–243CrossRefGoogle Scholar
  3. 3.
    Lowenthal M, Phillips M, Rimmer C, Rudnick P, Simón-Manso Y, Stein S, Tchekhovskoi D, Phinney K (2012) Anal Bioanal Chem 1–15Google Scholar
  4. 4.
    Lee YL, Owens J, Thrupp L, Cesario TC (2000) JAMA 283:1691CrossRefGoogle Scholar
  5. 5.
    Kuzminski LN (1996) Nutr Rev 54:S87–S90CrossRefGoogle Scholar
  6. 6.
    Nestel P (2003) Curr Opin Lipidology 14:3–8CrossRefGoogle Scholar
  7. 7.
    Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) J Agric Food Chem 51:68–75CrossRefGoogle Scholar
  8. 8.
    Lazze MC, Savio M, Pizzala R, Cazzalini O, Perucca P, Scovassi AI, Stivala LA, Bianchi L (2004) Carcinogenesis 25:1427–1433CrossRefGoogle Scholar
  9. 9.
    Yi WG, Fischer J, Krewer G, Akoh CC (2005) J Agric Food Chem 53:7320–7329CrossRefGoogle Scholar
  10. 10.
    Agnese AM, Perez C, Cabrera JL (2001) Phytomedicine 8:389–394CrossRefGoogle Scholar
  11. 11.
    Tikkanen MJ, Wahala K, Ojala S, Vihma V, Adlercreutz H (1998) Proc Natl Acad Sci USA 95:3106–3110CrossRefGoogle Scholar
  12. 12.
    Picerno P, Mencherini T, Lauro MR, Barbato F, Aquino R (2003) J Agric Food Chem 51:6423–6428CrossRefGoogle Scholar
  13. 13.
    Bramati L, Aquilano F, Pietta P (2003) J Agric Food Chem 51:7472–7474CrossRefGoogle Scholar
  14. 14.
    Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mol Plant Pathol 11:769–782Google Scholar
  15. 15.
    Rumbold K, van Buijsen HJJ, Overkamp KM, van Groenestijn JW, Punt PJ, van der Werf MJ (2009) Microb Cell Fact 8:64CrossRefGoogle Scholar
  16. 16.
    Steinfath M, Strehmel N, Peters R, Schauer N, Groth D, Hummel J, Steup M, Selbig J, Kopka J, Geigenberger P, van Dongen JT (2010) Plant Biotechnol J 8:900–911CrossRefGoogle Scholar
  17. 17.
    Mercuro G, Bassareo PP, Deidda M, Cadeddu C, Barberini L, Atzori L (2011) J Cardiovasc Med 12:800–805CrossRefGoogle Scholar
  18. 18.
    Xuan JK, Pan GH, Qiu YP, Yang L, Su MM, Liu YM, Chen J, Feng GY, Fang YR, Jia W, Xing QH, He L (2011) J Proteome Res 10:5433–5443CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Phillips MM, Case RJ, Rimmer CA, Sander LC, Sharpless KE, Wise SA, Yen JH (2010) Anal Bioanal Chem 398:425–434CrossRefGoogle Scholar
  21. 21.
    NIST (2012) Certificate of Analysis (COA). Available from: http://www.nist.gov/srm/index.cfm
  22. 22.
    Stein SE (1999) J Am Soc Mass Spectrom 10:770–781CrossRefGoogle Scholar
  23. 23.
    Canini A, Alesiani D, D'Arcangelo G, Tagliatesta P (2007) J Food Compos Anal 20:584–590CrossRefGoogle Scholar
  24. 24.
    Zuo YG, Wang CX, Zhan J (2002) J Agric Food Chem 50:3789–3794CrossRefGoogle Scholar
  25. 25.
    NIST (2012): web page for NIST SRM/D 1950Google Scholar
  26. 26.
    NIST (2011) NIST/EPA/NIH Mass Spectral Library with Search Program (Data Version: NIST 11, Software Version 20 g) 2011: Website for NIST Standard Reference Database 1AGoogle Scholar
  27. 27.
    de Melo CL, Queiroz MGR, Fonseca SGC, Bizerra AMC, Lemos TLG, Melo TS, Santos FA, Rao VS (2010) Chem Biol Interact 185:59–65CrossRefGoogle Scholar
  28. 28.
    Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, Guha S, Sethi G, Aggarwal BB (2007) Mol Cancer Res 5:943–955CrossRefGoogle Scholar
  29. 29.
    Wang C, Zuo Y (2011) Food Chem 128:562–568CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2012

Authors and Affiliations

  • Mark S. Lowenthal
    • 1
  • Nirina R. Andriamaharavo
    • 1
  • Stephen E. Stein
    • 1
  • Karen W. Phinney
    • 1
  1. 1.Biomolecular Measurement DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations