Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 7, pp 2321–2331 | Cite as

Improved detection specificity for plasma proteins by targeting cysteine-containing peptides with photo-SRM

  • Quentin Enjalbert
  • Marion Girod
  • Romain Simon
  • Jérémy Jeudy
  • Fabien Chirot
  • Arnaud Salvador
  • Rodolphe Antoine
  • Philippe Dugourd
  • Jérôme LemoineEmail author
Original Paper

Abstract

Targeted mass spectrometry using selected reaction monitoring (SRM) has emerged as an alternative to immunoassays for protein quantification owing to faster development time and higher multiplexing capability. However, the SRM strategy is faced with the high complexity of peptide mixtures after trypsin digestion of whole plasma or the cellular proteome that most of the time causes contamination, irremediably, by interfering compounds in the transition channels monitored. This problem becomes increasingly acute when the targeted protein is present at a low concentration. In this work, the merit of laser-induced photo-dissociation in the visible region at 473 nm implemented in an hybrid quadrupole linear ion-trap mass spectrometer (photo-SRM) was evaluated for detection specificity of cysteine-containing peptides in a group of plasma proteins after tagging with a dabcyl chromophore. Compared with conventional SRM, photo-SRM chromatograms have improved detection specificity for most of peptides monitored. Comparison of the signals obtained for the best proteotypic peptides in SRM mode and those recorded by photo-SRM of cysteine-containing peptides for the same proteins reveals either increased (up to 10-fold) or similar signal to photo-SRM detection. Finally, photo-SRM has extended response linearity across a calibration plot obtained by diluting human plasma in rat plasma, down to the lowest concentrations. Hence, photo-SRM may advantageously complement conventional SRM in assay of proteins in complex biological matrices.

Keywords

Photo-SRM Cysteine-containing peptides quantification Chromophore derivatization Plasma proteins 

Notes

Acknowledgments

The authors would like to acknowledge the French Agence National de la Recherche for the funding of photo-SRM project (ANR-11-BSV5-003-01).

Supplementary material

216_2012_6603_MOESM1_ESM.pdf (510 kb)
ESM 1 (PDF 509 kb)

References

  1. 1.
    Anderson NL, Anderson NG (2002) The human plasma proteome - History, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867CrossRefGoogle Scholar
  2. 2.
    Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6(12):2212–2229CrossRefGoogle Scholar
  3. 3.
    Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5(4):573–588Google Scholar
  4. 4.
    Elliott MH, Smith DS, Parker CE, Borchers C (2009) Current trends in quantitative proteomics. J Mass Spectrom 44(12):1637–1660Google Scholar
  5. 5.
    Simon R, Girod M, Fonbonne C, Salvador A, Clement Y, Lanteri P, Amouyel P, Lambert JC, Lemoine J (2012) Total ApoE and ApoE4 isoform assays in an Alzheimer's disease case control study by targeted mass spectrometry (n = 669): a pilot assay for methionine-containing proteotypic peptides. Mol Cell Proteomics 11(11):1389–1403Google Scholar
  6. 6.
    Barnidge DR, Goodmanson MK, Klee GG, Muddiman DC (2004) Absolute quantification of the model biomarker prostate-specific antigen in serum by LC–MS/MS using protein cleavage and isotope dilution mass spectrometry. J Proteome Res 3(3):644–652CrossRefGoogle Scholar
  7. 7.
    Fortin T, Salvador A, Charrier JP, Lenz C, Lacoux X, Morla A, Choquet-Kastylevsky G, Lemoine J (2009) Clinical Quantitation of Prostate-specific Antigen Biomarker in the Low Nanogram/Milliliter Range by Conventional Bore Liquid Chromatography–Tandem Mass Spectrometry (Multiple Reaction Monitoring) Coupling and Correlation with ELISA Tests. Mol Cell Proteomics 8(5):1006–1015CrossRefGoogle Scholar
  8. 8.
    Hoofnagle AN, Becker JO, Wener MH, Heinecke JW (2008) Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin Chem 54(11):1796–1804CrossRefGoogle Scholar
  9. 9.
    Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28(7):710–721CrossRefGoogle Scholar
  10. 10.
    Huettenhain R, Malmstroem J, Picotti P, Aebersold R (2009) Perspectives of targeted mass spectrometry for protein biomarker verification. Curr Opin Chem Biol 13(5–6):518–525CrossRefGoogle Scholar
  11. 11.
    Lin S, Shaler TA, Becker CH (2006) Quantification of intermediate-abundance proteins in serum by multiple reaction monitoring mass spectrometry in a single-quadrupole ion trap. Anal Chem 78(16):5762–5767CrossRefGoogle Scholar
  12. 12.
    Callipo L, Caruso G, Foglia P, Gubbiotti R, Samperi R, Lagana A (2010) Immunoprecipitation on magnetic beads and liquid chromatography–tandem mass spectrometry for carbonic anhydrase II quantification in human serum. Anal Biochem 400(2):195–202CrossRefGoogle Scholar
  13. 13.
    Winther B, Nordlund M, Paus E, Reubsaet L, Halvorsen TG (2009) Immuno-capture as ultimate sample cleanup in LC–MS/MS determination of the early stage biomarker ProGRP. J Sep Sci 32(17):2937–2943CrossRefGoogle Scholar
  14. 14.
    Hossain M, Kaleta DT, Robinson EW, Liu T, Zhao R, Page JS, Kelly RT, Moore RJ, Tang K, Camp DG II, Qian W-J, Smith RD (2011) Enhanced sensitivity for selected reaction monitoring mass spectrometry-based targeted proteomics using a dual stage electrodynamic ion funnel interface. 10(2):M000062–MCP201Google Scholar
  15. 15.
    Fortin T, Salvador A, Charrier JP, Lenz C, Bettsworth F, Lacoux X, Choquet-Kastylevsky G, Lemoine J (2009) Multiple reaction monitoring cubed for protein quantification at the Low nanogram/milliliter level in nondepleted human serum. Anal Chem 81(22):9343–9352CrossRefGoogle Scholar
  16. 16.
    Lemoine J, Fortin T, Salvador A, Jaffuel A, Charrier J-P, Choquet-Kastylevsky G (2012) The current status of clinical proteomics and the use of MRM and MRM(3) for biomarker validation. Expert Rev Mol Diagn 12(4):333–342CrossRefGoogle Scholar
  17. 17.
    Wang SH, Zhang X, Regnier FE (2002) Quantitative proteomics strategy involving the selection of peptides containing both cysteine and histidine from tryptic digests of cell lysates. J Chromatogr A 949(1–2):153–162Google Scholar
  18. 18.
    Giron P, Dayon L, Sanchez J-C (2011) Cysteine tagging for Ms-based proteomics. Mass Spectrom Rev 30(3):366–395CrossRefGoogle Scholar
  19. 19.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999CrossRefGoogle Scholar
  20. 20.
    Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5(10):796–806CrossRefGoogle Scholar
  21. 21.
    Larraillet V, Antoine R, Dugourd P, Lemoine J (2009) Activated-electron photodetachment dissociation for the structural characterization of protein polyanions. Anal Chem 81(20):8410–8416CrossRefGoogle Scholar
  22. 22.
    Reilly JP (2009) Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom Rev 28(3):425–447CrossRefGoogle Scholar
  23. 23.
    Tecklenburg RE, Miller MN, Russell DH (1989) Laser Ion-beam photodissociation studies of model amino-acids and peptides. J Am Chem Soc 111(4):1161–1171CrossRefGoogle Scholar
  24. 24.
    Williams ER, Furlong JJP, McLafferty FW (1990) Efficiency of collisionally-activated dissociation and 193-Nm photodissociation of peptide ions in Fourier-transform mass-spectrometry. J Am Soc Mass Spectrom 1(4):288–294CrossRefGoogle Scholar
  25. 25.
    Ly T, Julian RR (2009) Ultraviolet photodissociation: developments towards applications for mass-spectrometry-based proteomics. Angew Chem Int Ed 48(39):7130–7137CrossRefGoogle Scholar
  26. 26.
    Agarwal A, Diedrich JK, Julian RR (2011) Direct elucidation of disulfide bond partners using ultraviolet photodissociation mass spectrometry. Anal Chem 83(17):6455–6458CrossRefGoogle Scholar
  27. 27.
    Devakumar A, Thompson MS, Reilly JP (2005) Fragmentation of oligosaccharide ions with 157 nm vacuum ultraviolet light. Rapid Commun Mass Spectrom 19(16):2313–2320CrossRefGoogle Scholar
  28. 28.
    Enjalbert Q, Racaud A, Lemoine J, Redon S, Ayhan MM, Andraud C, Chambert S, Bretonniere Y, Loison C, Antoine R, Dugourd P (2011) Optical properties of a visible push–pull chromophore covalently bound to carbohydrates: solution and Gas-phase spectroscopy combined to theoretical investigations. J Phys Chem B 116(2):841–851CrossRefGoogle Scholar
  29. 29.
    Racaud A, Antoine R, Joly L, Mesplet N, Dugourd P, Lemoine J (2009) Wavelength-Tunable Ultraviolet Photodissociation (UVPD) of heparin-derived disaccharides in a linear ion trap. J Am Soc Mass Spectrom 20(9):1645–1651CrossRefGoogle Scholar
  30. 30.
    Gabelica V, Rosu F, De Pauw E, Antoine R, Tabarin T, Broyer M, Dugourd P (2007) Electron photodetachment dissociation of DNA anions with covalently or noncovalently bound chromophores. J Am Soc Mass Spectrom 18(11):1990–2000CrossRefGoogle Scholar
  31. 31.
    Gabelica V, Tabarin T, Antoine R, Rosu F, Compagnon I, Broyer M, De Pauw E, Dugourd P (2006) Electron photodetachment dissociation of DNA polyanions in a quadrupole ion trap mass spectrometer. Anal Chem 78(18):6564–6572CrossRefGoogle Scholar
  32. 32.
    Smith SI, Brodbelt JS (2011) Hybrid activation methods for elucidating nucleic acid modifications. Anal Chem 83(1):303–310CrossRefGoogle Scholar
  33. 33.
    Balbeur D, Dehareng D, De Pauw E (2010) Identification of fragmentation channels of dinucleotides using deuterium labeling. J Am Soc Mass Spectrom 21(1):23–33CrossRefGoogle Scholar
  34. 34.
    Gabelica V, Rosu F, De Pauw E, Lemaire J, Gillet JC, Poully JC, Lecomte F, Gregoire G, Schermann JP, Desfrancois C (2008) Infrared signature of DNA G-quadruplexes in the gas phase. J Am Chem Soc 130(6):1810–1811CrossRefGoogle Scholar
  35. 35.
    Hao C, Le Blanc JCY, Verkerk UH, Siu KWM, Loboda AV (2010) Ultraviolet photodissociation of protonated pharmaceuticals in a pressurized linear quadrupole ion trap. Rapid Commun Mass Spectrom 24(15):2262–2268CrossRefGoogle Scholar
  36. 36.
    Wilson JJ, Brodbelt JS (2007) MS/MS simplification by 355 nm ultraviolet photodissociation of chromophore-derivatized peptides in 4–3 quadrupole ion trap. Anal Chem 79(20):7883–7892CrossRefGoogle Scholar
  37. 37.
    Diedrich JK, Julian RR (2010) Site-selective fragmentation of peptides and proteins at quinone-modified cysteine residues investigated by ESI–MS. Anal Chem 82(10):4006–4014CrossRefGoogle Scholar
  38. 38.
    Enjalbert Q, Simon R, Salvador A, Antoine R, Redon S, Ayhan MM, Darbour F, Chambert S, Bretonniere Y, Dugourd P, Lemoine J (2011) Photo-SRM: laser-induced dissociation improves detection selectivity of selected reaction monitoring mode. Rapid Commun Mass Spectrom 25(22):3375–3381CrossRefGoogle Scholar
  39. 39.
    Crowe MC, Brodbelt JS (2005) Differentiation of phosphorylated and unphosphorylated peptides by high-performance liquid chromatography–electrospray ionization-infrared multiphoton dissociation in a quadrupole ion trap. Anal Chem 77(17):5726–5734CrossRefGoogle Scholar
  40. 40.
    Madsen JA, Cullen TW, Trent MS, Brodbelt JS (2011) IR and UV photodissociation as analytical tools for characterizing lipid a structures. Anal Chem 83(13):5107–5113CrossRefGoogle Scholar
  41. 41.
    Hortin GL, Sviridov D, Anderson NL (2008) High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance. Clin Chem 54(10):1608–1616CrossRefGoogle Scholar
  42. 42.
    MacLean B, Tomazela DM, Abbatiello SE, Zhang SC, Whiteaker JR, Paulovich AG, Carr SA, MacCoss MJ (2010) Effect of collision energy optimization on the measurement of peptides by Selected Reaction Monitoring (SRM) mass spectrometry. Anal Chem 82(24):10116–10124CrossRefGoogle Scholar
  43. 43.
    MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968CrossRefGoogle Scholar
  44. 44.
    Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, Borchers CH (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 8(8):1860–1877CrossRefGoogle Scholar
  45. 45.
    Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham A-JL, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27(7):633–641CrossRefGoogle Scholar
  46. 46.
    Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E, Sabatine MS, Gerszten RE, Carr SA (2009) Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 8(10):2339–2349CrossRefGoogle Scholar
  47. 47.
    Paulovich AG, Billheimer D, Ham A-JL, Vega-Montoto L, Rudnick PA, Tabb DL, Wang P, Blackman RK, Bunk DM, Cardasis HL, Clauser KR, Kinsinger CR, Schilling B, Tegeler TJ, Variyath AM, Wang M, Whiteaker JR, Zimmerman LJ, Fenyo D, Carr SA, Fisher SJ, Gibson BW, Mesri M, Neubert TA, Regnier FE, Rodriguez H, Spiegelman C, Stein SE, Tempst P, Liebler DC (2010) Interlaboratory study characterizing a yeast performance standard for benchmarking LC–MS platform performance. Mol Cell Proteomics 9(2):242–254CrossRefGoogle Scholar
  48. 48.
    Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, Russo P, Ross MM, Zhang H, Tian Y, Kulasingam V, Drabovich AP, Smith C, Batruch I, Liotta L, Petricoin E, Diamandis EP, Chan DW, Lopez MF (2010) Platform for establishing inter laboratory reproducibility of selected reaction monitoring-based mass spectrometry peptide assays. J Proteome Res 9(12):6678–6688CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Quentin Enjalbert
    • 1
    • 2
    • 3
  • Marion Girod
    • 1
    • 3
  • Romain Simon
    • 1
    • 3
  • Jérémy Jeudy
    • 1
    • 3
  • Fabien Chirot
    • 1
    • 3
  • Arnaud Salvador
    • 1
    • 3
  • Rodolphe Antoine
    • 1
    • 2
  • Philippe Dugourd
    • 1
    • 2
  • Jérôme Lemoine
    • 1
    • 3
    Email author
  1. 1.Université LyonLyonFrance
  2. 2.Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de LyonVilleurbanneFrance
  3. 3.CNRS et Université Lyon 1 UMR 5280, ISALyonFrance

Personalised recommendations