Analytical and Bioanalytical Chemistry

, Volume 405, Issue 5, pp 1613–1621 | Cite as

Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A

  • Betty C. Galarreta
  • Mohammadali Tabatabaei
  • Valérie Guieu
  • Eric Peyrin
  • François Lagugné-Labarthet
Original Paper

Abstract

A selective aptameric sequence is adsorbed on a two-dimensional nanostructured metallic platform optimized for surface-enhanced Raman spectroscopy (SERS) measurements. Using nanofabrication methods, a metallic nanostructure was prepared by electron-beam lithography onto a glass coverslip surface and embedded within a microfluidic channel made of polydimethylsiloxane, allowing one to monitor in situ SERS fingerprint spectra from the adsorbed molecules on the metallic nanostructures. The gold structure was designed so that its localized surface plasmon resonance matches the excitation wavelength used for the Raman measurement. This optofluidic device is then used to detect the presence of a toxin, namely ochratoxin-A (OTA), in a confined environment, using very small amounts of chemicals, and short data acquisition times, by taking advantage of the optical properties of a SERS platform to magnify the Raman signals of the aptameric monolayer system and avoiding chemical labeling of the aptamer or the OTA target.

Fig

Aptamer detection of OTA within a SERS/microfluidic channel

Keywords

Aptamers Ochratoxin-A Microfluidics SERS platforms Plasmonics 

Notes

Acknowledgments

The authors wish to gratefully acknowledge the Nanofabrication Facility at Western University for the fabrication of the patterned substrates and microfluidic device. This research was funded by the Natural Sciences and Engineering Research Council of Canada Discovery Grant and by the Canada Research Chairs program.

Supplementary material

216_2012_6557_MOESM1_ESM.pdf (157 kb)
ESM 1(PDF 156 kb)

References

  1. 1.
    Yamamoto R, Katahira M, Nishihira A, Baba T, Taira K, Kumar PKR (2000) Genes Cells 5:371–388CrossRefGoogle Scholar
  2. 2.
    Fukuda K, Vishnuvardhan D, Sekiya S, Hwang J, Kakiuchi N, Kazunari T, Shimotohno K, Kumar PKR, Nishikawa S (2000) Eur J Biochem 267:3685–3694CrossRefGoogle Scholar
  3. 3.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Nature 355:564–566CrossRefGoogle Scholar
  4. 4.
    Torres-Chavolla E, Alocilja EC (2009) Biosens Bioelectron 24:3175–3182CrossRefGoogle Scholar
  5. 5.
    Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) J Am Chem Soc 128:3138–3139CrossRefGoogle Scholar
  6. 6.
    Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M (1996) Nucleic Acids Res 24:1029–1036CrossRefGoogle Scholar
  7. 7.
    Ueyama H, Takagi M, Takenaka S (2002) J Am Chem Soc 124:14286–14287CrossRefGoogle Scholar
  8. 8.
    Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C (2008) Small 4:1196–1200CrossRefGoogle Scholar
  9. 9.
    Ellington AD, Szostak JW (1990) Nature 346:818–822CrossRefGoogle Scholar
  10. 10.
    Tuerk C, Gold L (1990) Science 249:505–510CrossRefGoogle Scholar
  11. 11.
    Barthelmebs L, Jonca J, Hayat A, Prieto-Simon B, Marty J-L (2010) Food Control 22:737–743CrossRefGoogle Scholar
  12. 12.
    Cruz-Aguado JA, Penner G (2008) J Agric Food Chem 56:10456–10461CrossRefGoogle Scholar
  13. 13.
    Cruz-Aguado JA, Penner G (2008) Anal Chem 80:8853–8855CrossRefGoogle Scholar
  14. 14.
    De Girolamo A, McKeague M, Miller JD, DeRosa MC, Visconti A (2011) Food Chem 127:1378–1384CrossRefGoogle Scholar
  15. 15.
    Merino EJ, Weeks KM (2005) J Am Chem Soc 127:12766–12767CrossRefGoogle Scholar
  16. 16.
    Nutiu R, Li Y (2005) Angew Chem Int Ed 44:5464–5467CrossRefGoogle Scholar
  17. 17.
    Perrier S, Ravelet C, Guieu V, Fize J, Roy B, Perigaud C, Peyrin E (2010) Biosens Bioelec 25:1652–1657CrossRefGoogle Scholar
  18. 18.
    Rhouati A, Paniel N, Meraihi Z, Marty J-L (2011) Food Control 22:1790–1796CrossRefGoogle Scholar
  19. 19.
    Ruta J, Perrier S, Ravelet C, Fize J, Peyrin E (2009) Anal Chem 81:7468–7473CrossRefGoogle Scholar
  20. 20.
    Sheng L, Ren J, Miao Y, Wang J, Wang E (2011) Biosens Bioelectron 26:3494–3499CrossRefGoogle Scholar
  21. 21.
    Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) J Am Chem Soc 129:3814–3815CrossRefGoogle Scholar
  22. 22.
    Tang Z, Mallikaratchy P, Yang R, Kim Y, Zhu Z, Wang H, Tan W (2008) J Am Chem Soc 130:11268–11269CrossRefGoogle Scholar
  23. 23.
    Wang L, Chen W, Ma W, Liu L, Ma W, Zhao Y, Zhu Y, Xu L, Kuang H, Xu C (2011) Chem Commun 47:1574–1576CrossRefGoogle Scholar
  24. 24.
    Zhu Z, Ravelet C, Perrier S, Guieu V, Roy B, Perigaud C, Peyrin E (2010) Anal Chem 82:4613–4620CrossRefGoogle Scholar
  25. 25.
    Kidd A, Guieu V, Perrier S, Ravelet C, Peyrin E (2011) Anal Bioanal Chem 401(10):3229–3234CrossRefGoogle Scholar
  26. 26.
    Zhu Z, Schmidt T, Mahrous M, Guieu V, Perrier S, Ravelet C, Peyrin E (2011) Anal Chim Acta 707(1–2):191–196CrossRefGoogle Scholar
  27. 27.
    Bonel L, Vidal JC, Duato P, Castillo JR (2011) Biosens Bioelectron 26:3254–3259CrossRefGoogle Scholar
  28. 28.
    Du Y, Li B, Wang F, Dong S (2009) Biosens Bioelectron 24:1979–1983CrossRefGoogle Scholar
  29. 29.
    Ikebukuro K, Kiyohara C, Sode K (2004) Anal Lett 37:2901–2909CrossRefGoogle Scholar
  30. 30.
    Sassolas A, Blum LJ, Leca-Bouvier BD (2009) Electroanalysis 21:1237–1250CrossRefGoogle Scholar
  31. 31.
    Wang Z, Duan N, Hun X, Wu S (2010) Anal Bioanal Chem 398:2125–2132CrossRefGoogle Scholar
  32. 32.
    Zuo X, Xiao Y, Plaxco KW (2009) J Am Chem Soc 131:6944–6945CrossRefGoogle Scholar
  33. 33.
    Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Anal Chem 82(19):8131–8136CrossRefGoogle Scholar
  34. 34.
    Wanga G, Wanga Y, Chena L, Choo J (2010) Biosens Bioelectron 25:1859–1868CrossRefGoogle Scholar
  35. 35.
    Yang C, Wang Y, Marty J-L, Yang X (2011) Biosens Bioelec 26:2724–2727CrossRefGoogle Scholar
  36. 36.
    Guieu V, Ravelet C, Perrier S, Zhu Z, Cayez S, Peyrin E (2011) Anal Chim Acta 706(2):349–353CrossRefGoogle Scholar
  37. 37.
    Breuzard G, Millot J-M, Riou J-F, Manfait M (2003) Anal Chem 75:4305–4311CrossRefGoogle Scholar
  38. 38.
    Chen J, Jiang J, Gao X, Liu G, Shen G, Yu R (2008) Chem Eur J 14:8374–8382CrossRefGoogle Scholar
  39. 39.
    Kim NH, Lee SJ, Moskovits M (2010) Nano Lett 10:4181–4185CrossRefGoogle Scholar
  40. 40.
    Neumann O, Zhang D, Tam F, Lal S, Wittung-Stafshede P, Halas NJ (2009) Anal Chem 81:10002–10006CrossRefGoogle Scholar
  41. 41.
    Ochsenkühn MA, Campbell CJ (2010) Chem Commun 46:2799–2801CrossRefGoogle Scholar
  42. 42.
    Pagba CV, Lanea SM, Wachsmann-Hogiu S (2010) J Raman Spectrosc 41:241–247Google Scholar
  43. 43.
    Wei C, Jia G, Yuan J, Feng Z, Li C (2006) Biochemistry 45:6681–6691CrossRefGoogle Scholar
  44. 44.
    Huh YS, Erickson D (2010) Biosens Bioelectron 25:1240–1243CrossRefGoogle Scholar
  45. 45.
    Rusciano G, De Luca AC, Pesce G, Sasso A, Oliviero G, Amato J, Borbone N, D'Errico S, Piccialli V, Piccialli G, Mayol L (2011) Anal Chem 17:6849–6855CrossRefGoogle Scholar
  46. 46.
    Hernandez Hierro JM, Garcia-Villanova RJ, Rodriguez Torrero P, Toruno Fonseca IM (2008) J Agric Food Chem 56:751–756CrossRefGoogle Scholar
  47. 47.
    Pfohl-Leszkowicz A, Manderville RA (2007) Mol Nutr Food Res 51:61–99CrossRefGoogle Scholar
  48. 48.
    Serra Bonvehi J (2004) J Agric Food Chem 52:6347–6352CrossRefGoogle Scholar
  49. 49.
    Kabak B (2009) Food Chem Toxicol 47:348–352CrossRefGoogle Scholar
  50. 50.
    Medina A, Valle-Algarra FM, Gimeno-Adelantado JV, Mateo R, Mateo F, Jimenez M (2006) J Chromat A 1121:178–183CrossRefGoogle Scholar
  51. 51.
    Noonim P, Mahakarnchanakul W, Nielsen KF, Frisvad JC, Samson RA (2008) Int J Food Microbiol 128:197–202CrossRefGoogle Scholar
  52. 52.
    Zezza F, Longobardi F, Pascale M, Eremin SA, Visconti A (2009) Anal Bioanal Chem 395:1317–1323CrossRefGoogle Scholar
  53. 53.
    Coronel MB, Sanchis V, Ramos AJ, Marin S (2009) Food Chem Toxicol 47:2847–2852CrossRefGoogle Scholar
  54. 54.
    McKeague M, Bradley CR, Girolamo AD, Visconti A, Miller JD, DeRosa MC (2010) Int J Mol Sci 11:4864–4881CrossRefGoogle Scholar
  55. 55.
    O'Brien E, Dietrich DR (2005) Crit Rev Toxicol 35:33–60CrossRefGoogle Scholar
  56. 56.
    Li T, Jeon K-S, Suh YD, Kim MG (2011) Chem Commun 32:9098–9100CrossRefGoogle Scholar
  57. 57.
    Vidal JC, Duato P, Bonel L, Castillo JR (2009) Anal Bioanal Chem 394:575–582CrossRefGoogle Scholar
  58. 58.
    Galarreta BC, Norton PR, Lagugné-Labarthet F (2011) Langmuir 27(4):1494–1498CrossRefGoogle Scholar
  59. 59.
    Haes AJ, Van Duyne RP (2002) J Am Chem Soc 124:10596–10604CrossRefGoogle Scholar
  60. 60.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Anal Chem 70:4974–4984CrossRefGoogle Scholar
  61. 61.
    Xu Y, Takai M, Konno T, Ishihara K (2007) Lab Chip 7:196–206CrossRefGoogle Scholar
  62. 62.
    West J, Becker M, Tombrink S, Manz A (2008) Micro total analysis systems: latest achievements. Anal Chem 80(12):4403–4419CrossRefGoogle Scholar
  63. 63.
    Mingxu Y, Yan C, Lu P, Da H, Bincheng Y, Bangce Y, Weihong T (2011) Chem Science 2:1003–1010CrossRefGoogle Scholar
  64. 64.
    Galarreta BC, Harté E, Marquestaut N, Norton PR, Lagugné-Labarthet F (2010) Phys Chem Chem Phys 12:6810–6816CrossRefGoogle Scholar
  65. 65.
    Patrito N, McLachlan JM, Faria SN, Chan J, Norton PR (2007) Lab Chip 7:1813–1818CrossRefGoogle Scholar
  66. 66.
    Balamurugan S, Obubuafo A, Soper SA, McCarley RL, Spivak DA (2006) Langmuir 22:6446–6453CrossRefGoogle Scholar
  67. 67.
    Lakowicz JR (2006) Fluorescence anisotropy. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, pp 353–381CrossRefGoogle Scholar
  68. 68.
    Lafleur L, Rice J, Thomas GJ (1972) Biopolymers 11:2423–2437CrossRefGoogle Scholar
  69. 69.
    Nishimura Y, Tsuboi M (1986) J Mol Struct 146:123–153CrossRefGoogle Scholar
  70. 70.
    Prescott B, Steinmetz W, Thomas GJ (1984) Biopolymers 23:235–256CrossRefGoogle Scholar
  71. 71.
    Rappoport D, Shim S, Aspuru-Guzik A (2011) Phys Chem Lett 2:1254–1260CrossRefGoogle Scholar
  72. 72.
    Thomas GJ (1999) Annu Rev Biophys Biomol Struct 28:1–27CrossRefGoogle Scholar
  73. 73.
    Bredenkamp MW, Dillen JLM, van Rooyen PH, Steyn PS (1989) J Chem Soc Perkin Trans II:1835–1839Google Scholar
  74. 74.
    Galvis-Sánchez AC, Barros AS, Delgadillo I (2008) Anal Chim Acta 617:59–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Betty C. Galarreta
    • 1
  • Mohammadali Tabatabaei
    • 1
  • Valérie Guieu
    • 2
  • Eric Peyrin
    • 2
  • François Lagugné-Labarthet
    • 1
  1. 1.Department of ChemistryUniversity of Western OntarioLondonCanada
  2. 2.Département de Pharmacochimie MoléculaireUniversité de GrenobleSaint-Martin-d’HèresFrance

Personalised recommendations