Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 4, pp 1283–1292 | Cite as

Strategy for quantifying trace levels of BMAA in cyanobacteria by LC/MS/MS

  • Liying Jiang
  • Eric Johnston
  • K. Magnus Åberg
  • Ulrika Nilsson
  • Leopold L. Ilag
Original Paper

Abstract

The cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) is an amino acid that is putatively associated with the pathology of amyotrophic lateral sclerosis/Parkinsonism–dementia complex (ALS-PDC) disease. It raises serious health risk concerns since cyanobacteria are ubiquitous thus making human exposure almost inevitable. The identification and quantification of BMAA in cyanobacteria is challenging because it is present only in trace amounts and occurs alongside structurally similar compounds such as BMAA isomers. This work describes an enhanced liquid chromatography/tandem mass spectrometry platform that can distinguish BMAA from its isomers β-amino-N-methyl-alanine, N-(2-aminoethyl) glycine (AEG), and 2,4-diaminobutyric acid, thus ensuring confident identification of BMAA. The method's sensitivity was improved fourfold by a post-column addition of acetonitrile. The instrument and method limits of detection were shown to be 4.2 fmol/injection (or 0.5 pg/one column) and 0.1 μg/g dry weight of cyanobacteria, respectively. The quantification method uses synthesized deuterated BMAA as an internal standard and exhibits good linearity, accuracy, and precision. Matrix effects were also investigated, revealing an ion enhancement of around 18 %. A lab-cultured cyanobacterial sample (Leptolyngbya PCC73110) was analyzed and shown to contain about 0.73 μg/g dry weight BMAA. The isomer AEG, whose chromatographic properties closely resemble those of BMAA, was also detected. These results highlight the importance of distinguishing BMAA from its isomers for reliable identification as well as providing a sensitive and accurate quantification method for measuring trace levels of BMAA in cyanobacterial samples.

Keywords

ALS-PDC Isomers AEG BMAA Post-column addition Matrix effect 

Notes

Acknowledgments

We thank Prof. Birgitta Bergman and Dr. Johan Eriksson (Department of Botany, Stockholm University) for providing the samples used in this study.

Supplementary material

216_2012_6550_MOESM1_ESM.pdf (77 kb)
ESM 1 (PDF 77 kb)

References

  1. 1.
    Vega A, Bell EA (1967) Alpha-amino-beta-methylaminopropionic acid, a new amino acid from seeds of Cycas circinalis. Phytochemistry 6:759CrossRefGoogle Scholar
  2. 2.
    Bell EA (1964) Relevance of biochemical taxonomy to the problem of lathyrism. Nature 203:378CrossRefGoogle Scholar
  3. 3.
    Kurland LT, Mulder DW (1954) Epidemiologic investigations of amyotrophic lateral sclerosis. I. Preliminary report on geographic distribution, with special reference to the Mariana Islands, including clinical and pathologic observations. Neurology 4:355CrossRefGoogle Scholar
  4. 4.
    Mulder DW, Kurland LT (1987) Motor neuron disease: epidemiologic studies. Adv Exp Med Biol 209:325Google Scholar
  5. 5.
    Spencer PS, Nunn PB, Hugon J, Ludolph A, Roy DN (1986) Motorneurone disease on Guam: possible role of a food neurotoxin. Lancet 1:965CrossRefGoogle Scholar
  6. 6.
    Spencer PS (1987) Guam ALS/parkinsonism-dementia: a long-latency neurotoxic disorder caused by “slow toxin(s)” in food? Can J Neurol Sci 14:347Google Scholar
  7. 7.
    Nunn PB, Seelig M, Zagoren JC, Spencer PS (1987) Stereospecific acute neuronotoxicity of ‘uncommon’ plant amino acids linked to human motor-system diseases. Brain Res 410:375CrossRefGoogle Scholar
  8. 8.
    Ross SM, Spencer PS (1987) Specific antagonism of behavioral action of “uncommon” amino acids linked to motor system diseases. Synapse 1:248CrossRefGoogle Scholar
  9. 9.
    Duncan MW, Kopin IJ, Garruto RM, Lavine L, Markey SP (1988) 2-Amino-3 (methylamino)-propionic acid in cycad derived foods is an unlikely cause of amyotrophic lateral sclerosis/parkinsonism. Lancet 2:631CrossRefGoogle Scholar
  10. 10.
    Duncan MW, Steele JC, Kopin IJ, Markey SP (1990) 2-Amino-3-(methylamino)-propanoic acid (BMAA) in cycad flour: an unlikely cause of amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Neurology 40:767CrossRefGoogle Scholar
  11. 11.
    Cox P, Banack S, Murch S (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci USA 100:13380CrossRefGoogle Scholar
  12. 12.
    Cox PA, Sacks OW (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 58:956CrossRefGoogle Scholar
  13. 13.
    Banack SA, Cox PA (2003) Biomagnification of cycad neurotoxins in flying foxes. Neurology 61:387CrossRefGoogle Scholar
  14. 14.
    Murch SJ, Cox PA, Banack SA (2004) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proc Natl Acad Sci USA 101:12228CrossRefGoogle Scholar
  15. 15.
    Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-l-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102:5074CrossRefGoogle Scholar
  16. 16.
    Metcalf JS, Banack SA, Lindsay J, Morrison LF, Cox PA, Codd GA (2008) Co-occurrence of beta-N-methylamino-l-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ Microbiol 10(3):702–708CrossRefGoogle Scholar
  17. 17.
    Faassen EJ, Gillissen F, Zweers HAJ, Luerling M (2009) Determination of the neurotoxins BMAA (beta-N-methylamino-l-alanine) and DAB (alpha-gamma-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms. Amyotroph Lateral Scler 10:79CrossRefGoogle Scholar
  18. 18.
    Brand LE, Pablo J, Compton A, Hammerschlag N, Mash DC (2010) Cyanobacterial blooms and the occurrence of the neurotoxin, beta-N-methylamino-l-alanine (BMAA), in South Florida aquatic food webs. Harmful Algae 9:620CrossRefGoogle Scholar
  19. 19.
    Mondo K, Hammerschlag N, Basile M, Pablo J, Banack SA, Mash DC (2012) Cyanobacterial neurotoxin beta-N-methylamino alanine (BMAA) in shark fins. Mar Drugs 10:509CrossRefGoogle Scholar
  20. 20.
    Esterhuizen M, Downing T (2008) beta-N-methylamino-l-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicol Environ, 71(2):309–313Google Scholar
  21. 21.
    Esterhuizen-Londt M, Downing S, Downing TG (2011) Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised beta-N-methylamino-l-alanine (BMAA) in cyanobacteria. Water SA 37:133Google Scholar
  22. 22.
    Jonasson S, Eriksson J, Berntzon L, Spacil Z, Ilag LL, Ronnevi L, Rasmussen U, Bergman B (2010) Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc Natl Acad Sci USA 107:9252CrossRefGoogle Scholar
  23. 23.
    Bidigare RR, Christensen SJ, Wilde SB, Banack SA (2009) Cyanobacteria and BMAA: possible linkage with avian vacuolar myelinopathy (AVM) in the south-eastern United States. Amyotroph Lateral Scler 10(Suppl 2):71–73CrossRefGoogle Scholar
  24. 24.
    Craighead D, Metcalf JS, Banack SA, Amgalan L, Reynolds HV, Batmunkh M (2009) Presence of the neurotoxic amino acids beta-N-methylamino-l-alanine (BMAA) and 2,4-diamino-butyric acid (DAB) in shallow springs from the Gobi Desert. Amyotroph Lateral Scler 10:96CrossRefGoogle Scholar
  25. 25.
    Roney BR, Li R, Banack SA, Murch S, Honegger R, Cox PA (2009) Consumption of fa cai Nostoc soup: a potential for BMAA exposure from Nostoc cyanobacteria in China? Amyotroph Lateral Scler 10:44CrossRefGoogle Scholar
  26. 26.
    Li A, Tian Z, Li J, Yu R, Banack SA, Wang Z (2010) Detection of the neurotoxin BMAA within cyanobacteria isolated from freshwater in China. Toxicon 55:947CrossRefGoogle Scholar
  27. 27.
    Cox PA, Richer R, Metcalf JS, Banack SA, Codd GA, Bradley WG (2009) Cyanobacteria and BMAA exposure from desert dust: a possible link to sporadic ALS among Gulf War veterans. Amyotroph Lateral Scler 10:109CrossRefGoogle Scholar
  28. 28.
    Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. J Ethnopharmacol 118:159CrossRefGoogle Scholar
  29. 29.
    Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW (2004) Occurrence of beta-methylamino-L-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol Scand 110:267CrossRefGoogle Scholar
  30. 30.
    Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S, Bradley WG, Buck A, Mash DC (2009) Cyanobacterial neurotoxin BMAA in ALS and Alzheimer's disease. Acta Neurol Scand 120:216CrossRefGoogle Scholar
  31. 31.
    Rosen J, Hellenaes K (2008) Determination of the neurotoxin BMAA (beta-N-methylamino-l-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry). Analyst 133:1785 (Cambridge, UK)CrossRefGoogle Scholar
  32. 32.
    Banack SA, Metcalf JS, Spacil Z, Downing TG, Downing S, Long A, Nunn PB, Cox PA (2011) Distinguishing the cyanobacterial neurotoxin beta-N-methylamino-l-alanine (BMAA) from other diamino acids. Toxicon 57:730CrossRefGoogle Scholar
  33. 33.
    Snyder LR, Hoggard JC, Montine TJ, Synovec RE (2010) Development and application of a comprehensive two dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of L-beta-methylamino-alanine in human tissue. J Chromatogr A 1217:4639CrossRefGoogle Scholar
  34. 34.
    Spacil Z, Eriksson J, Jonasson S, Rasmussen U, Ilag LL, Bergman B (2010) Analytical protocol for identification of BMAA and DAB in biological samples. Analyst 135:127CrossRefGoogle Scholar
  35. 35.
    Jiang L, Aigret B, De Borggraeve WM, Spacil Z, Ilag LL (2012) Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples. Anal Bioanal Chem 403:1719CrossRefGoogle Scholar
  36. 36.
    Snyder LR, Cruz-Aguado R, Sadilek M, Galasko D, Shaw CA, Montine TJ (2009) Parkinson-dementia complex and development of a new stable isotope dilution assay for BMAA detection in tissue. Toxicol Appl Pharmacol 240:180Google Scholar
  37. 37.
    Kruger T, Monch B, Oppenhauser S, Luckas B (2010) LC-MS/MS determination of the isomeric neurotoxins BMAA (beta-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 55:547CrossRefGoogle Scholar
  38. 38.
    Zhou S, Hamburger M (1995) Effects of solvent composition on molecular ion response in electrospray mass spectrometry: investigation of the ionization processes. Rapid Commun Mass Spectrom 9:1516CrossRefGoogle Scholar
  39. 39.
    Iribarne JV, Dziedzic PJ, Thomson BA (1983) Atmospheric pressure ion evaporation-mass spectrometry. Int J Mass Spectrom Ion Phys 50:331CrossRefGoogle Scholar
  40. 40.
    Glover WB, Liberto CM, McNeil WS, Banack SA, Shipley PR, Murch SJ (2012) Reactivity of beta-methylamino-l-alanine in complex sample matrixes complicating detection and quantification by mass spectrometry. Anal Chem 84:7946 (Washington, DC, US)CrossRefGoogle Scholar
  41. 41.
    Faassen EJ, Gillissen F, Luerling M (2012) A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS One 7:36667CrossRefGoogle Scholar
  42. 42.
    Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray tandem mass spectrometry. Clin Biochem 38:328CrossRefGoogle Scholar
  43. 43.
    Li A, Fan H, Ma F, McCarron P, Thomas K, Tang X, Quilliam MA (2012) Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of beta-N-methylamino-l-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria. Analyst 137:1210 (Cambridge, UK)CrossRefGoogle Scholar
  44. 44.
    Banack SA, Metcalf JS, Jiang L, Craighead D, Ilag LL, Cox PA (2012) Cyanobacteria produce N-(2-aminoethyl)glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on earth. PLoS One 7:e49043Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Analytical ChemistryStockholm UniversityStockholmSweden
  2. 2.Department of Organic ChemistryStockholm UniversityStockholmSweden

Personalised recommendations