Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 9, pp 2843–2856 | Cite as

Compound-specific isotope analysis of benzotriazole and its derivatives

  • Stephanie Spahr
  • Sebastian Huntscha
  • Jakov Bolotin
  • Michael P. Maier
  • Martin Elsner
  • Juliane Hollender
  • Thomas B. HofstetterEmail author
Original paper

Abstract

Compound-specific isotope analysis (CSIA) is an important tool for the identification of contaminant sources and transformation pathways, but it is rarely applied to emerging aquatic micropollutants owing to a series of instrumental challenges. Using four different benzotriazole corrosion inhibitors and its derivatives as examples, we obtained evidence that formation of organometallic complexes of benzotriazoles with parts of the instrumentation impedes isotope analysis. Therefore, we propose two strategies for accurate \(\delta^{13}\)C and \(\delta^{15}\)N measurements of polar organic micropollutants by gas chromatography isotope ratio mass spectrometry (GC/IRMS). Our first approach avoids metallic components and uses a Ni/Pt reactor for benzotriazole combustion while the second is based on the coupling of online methylation to the established GC/IRMS setup. Method detection limits for on-column injection of benzotriazole, as well as its 1-CH\(_{3}\)-, 4-CH\(_{3}\)-, and 5-CH\(_{3}\)-substituted species were 0.1–0.3 mM and 0.1–1.0 mM for δ13C and δ15N analysis respectively, corresponding to injected masses of 0.7–1.8 nmol C and 0.4–3.0 nmol N, respectively. The Ni/Pt reactor showed good precision and was very long-lived (\(>\)1000 successful measurements). Coupling isotopic analysis to offline solid-phase extraction enabled benzotriazole-CSIA in tap water, wastewater treatment effluent, activated sludge, and in commercial dishwashing products. A comparison of \(\delta ^{13}\)C and \(\delta ^{15}\)N values from different benzotriazoles and benzotriazole derivatives, both from commercial standards and in dishwashing detergents, reveals the potential application of the proposed method for source apportionment.

Keywords

CSIA Gas chromatography isotope ratio mass spectrometry Benzotriazole Corrosion inhibitors Micropollutants Source identification 

Notes

Acknowledgements

We acknowledge the financial support from the Swiss Federal Office for the Environment and the German Federal Environmental Foundation (DBU).

Supplementary material

216_2012_6526_MOESM1_ESM.pdf (1.8 mb)
(PDF 1.84 MB)

References

  1. 1.
    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) Science313(5790):1072CrossRefGoogle Scholar
  2. 2.
    Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136CrossRefGoogle Scholar
  3. 3.
    Hofstetter T, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC-Trends Anal Chem 30:618–627CrossRefGoogle Scholar
  4. 4.
    Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12:2005–2031CrossRefGoogle Scholar
  5. 5.
    Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378:283–300CrossRefGoogle Scholar
  6. 6.
    Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schmimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491CrossRefGoogle Scholar
  7. 7.
    Hofstetter TB, Schwarzenbach RP, Bernasconi SM (2008) Assessing transformation processes of organic compounds using stable isotope fractionation. Environ Sci Technol 42:7737–7743CrossRefGoogle Scholar
  8. 8.
    Blessing M, Jochmann MA, Schmidt TC (2008) Pitfalls in compound-specific isotope analysis of environmental samples. Anal Bioanal Chem 390:591–603CrossRefGoogle Scholar
  9. 9.
    Reinnicke S, Juchelka D, Steinbeiss S,Meyer A, Hilkert A, Elsner M(2012) Gas chromatography-isotope ratio mass spectrometry of recalcitrant target compounds: performance of different combustion reactors and strategies for standardization. Rapid Commun Mass Spectrom 26:1053–1060CrossRefGoogle Scholar
  10. 10.
    Bi E, Schmidt TC, Haderlein SB (2006) Sorption of heterocyclic organic compounds to reference soils: column studies for process identification. Environ Sci Technol 40:5962–5970CrossRefGoogle Scholar
  11. 11.
    Bi E, Schmidt TC, Haderlein SB (2007) Environmental factors influencing sorption of heterocyclic aromatic compounds to soil. Environ Sci Technol 41:3172–3178CrossRefGoogle Scholar
  12. 12.
    Bi E, Zhang L, Schmidt TC, Haderlein SB (2009) Simulation of nonlinear sorption of N-heterocyclic organic contaminates in soil columns. J Contam Hydrol 107:58–65CrossRefGoogle Scholar
  13. 13.
    Voutsa D, Hartmann P, Schaffner C, Giger W (2006) Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environ Sci Pollut Res 13:333–341CrossRefGoogle Scholar
  14. 14.
    Giger W, Schaffner C, Kohler H-PE (2006) Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environ Sci Technol 40:7186–7192CrossRefGoogle Scholar
  15. 15.
    Reemtsma T, Miehe U, Duennbier U, Jekel M (2010) Polar pollutants in municipal wastewater and the water cycle: occurrence and removal of benzotriazoles. Water Res 44:596–604CrossRefGoogle Scholar
  16. 16.
    Weiss S, Jakobs J, Reemtsma T (2006) Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. Environ Sci Technol 40:7193–7199CrossRefGoogle Scholar
  17. 17.
    Cornell JS, Pillard DA, Hernandez MT (2000) Comparative measures of the toxicity of component chemicals in aircraft deicing fluid. Environ Toxicol Chem 19:1465–1472CrossRefGoogle Scholar
  18. 18.
    Kiss A, Fries E (2009) Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany). Environ Sci Pollut Res 16:702–710CrossRefGoogle Scholar
  19. 19.
    Katritzky AR, Lan X, Yang JZ, Denisko OV (1998) Properties and sythetic utility of N-substituted benzotriazoles. Chem Rev 98:409–548CrossRefGoogle Scholar
  20. 20.
    Hart DS, Davis LC, Erickson LE, Callender TM (2004) Sorption and partitioning parameters of benzotriazole compounds. Microchem J 77:9–17CrossRefGoogle Scholar
  21. 21.
    Liu Y-S, Ying G-G, Shareef A, Kookana RS (2011) Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Res 45:5005–5014CrossRefGoogle Scholar
  22. 22.
    Mawhinney DB, Vanderford BJ, Snyder SA (2012) Transformation of 1H-benzotriazole by ozone in aqueous solution. Environ Sci Technol 46:7102–7111CrossRefGoogle Scholar
  23. 23.
    Allam NK, Nazeer AA, Ashour EA (2009) A review of the effects of benzotriazole on the corrosion of copper and copper alloys in clean and polluted environments. J Appl Electrochem 39:961–969CrossRefGoogle Scholar
  24. 24.
    Finsgar M, Milosev I (2010) Inhibition of copper corrosion by 1,2,3-benzotriazole: a review. Corros Sci 52:2737–2749CrossRefGoogle Scholar
  25. 25.
    Reinnicke S, Bernstein A, Elsner M (2010) Small and reproducible isotope effects during methylation with trimethylsulfonium hydroxide (TMSH): a convenient derivatization method for isotope analysis of negatively charged molecules. Anal Chem 82:2013–2019CrossRefGoogle Scholar
  26. 26.
    Jochmann MA, Blessing M, Haderlein SB, Schmidt TC (2006) A new approach to determinemethod detection limits for compoundspecific isotope analysis of volatile organic compounds. Rapid Commun Mass Spectrom 20:3639–3648CrossRefGoogle Scholar
  27. 27.
    Hunkeler D, Bernasconi SM (2010). In: Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton, pp 23–42Google Scholar
  28. 28.
    Sherwood Lollar B, Hirschorn SK, Chartrand MMG, Lacrampe-Couloume G (2007) An approach for assessing total instrumental uncertainty in compound-specific carbon isotope analysis: implications for environmental remediation studies. Anal Chem 79:3469–3475CrossRefGoogle Scholar
  29. 29.
    Sessions AL (2006) Isotope-ratio detection for gas chromatography. J Sep Sci 29:1946–1961CrossRefGoogle Scholar
  30. 30.
    Skarpeli-Liati M, Turgeon A, Garr AN, Arnold WA, Cramer CJ, Hofstetter TB (2011) pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS. Anal Chem 83:1641–1648CrossRefGoogle Scholar
  31. 31.
    Merritt DA, Freeman KH, Ricci MP, Studley SA, Hayes JM (1995) Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry. Anal Chem 67:2461–2473CrossRefGoogle Scholar
  32. 32.
    Schmitt J, Glaser B, Zech W (2003) Amount-dependent isotopic fractionation during compound-specific isotope analysis. Rapid Commun Mass Spectrom 17:970–977CrossRefGoogle Scholar
  33. 33.
    Skarpeli-Liati M, Pati SG, Bolotin J, Eustis SN, Hofstetter TB (2012) Carbon, hydrogen, and nitrogen isotope fractionation associated with oxidative transformation of substituted N-alkyl amines. Environ Sci Technol 46:7189–7198CrossRefGoogle Scholar
  34. 34.
    Meyer AH, Penning H, Lowag H, Elsner M (2008) Precise and accurate compound specific carbon and nitrogen isotope analysis of atrazine: critical role of combustion oven conditions. Environ Sci Technol 42:7757–7763CrossRefGoogle Scholar
  35. 35.
    Hofstetter TB, Spain JC, Nishino SF, Bolotin J, Schwarzenbach RP (2008) Identifying competing aerobic nitrobenzene biodegradation pathways using compound-specific isotope analysis. Environ Sci Technol 42:4764–4770CrossRefGoogle Scholar
  36. 36.
    Pati SG, Shin K, Skarpeli-Liati M, Bolotin J, Eustis SN, Spain JC, Hofstetter TB (2012) Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine. Environ Sci Technol 46:11844–11853CrossRefGoogle Scholar
  37. 37.
    Merritt DA, Hayes JM (1994) Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry. J Am Soc Mass Spectrom 5:387–397CrossRefGoogle Scholar
  38. 38.
    Weiss S, Reemtsma T (2005) Determination of benzotriazole corrosion inhibitors from aqueous environmental samples by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Chem 77:7415–7420CrossRefGoogle Scholar
  39. 39.
    Smallwood BJ, Philp RP, Allen JD (2002) Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry. Org Geochem 33:149–159CrossRefGoogle Scholar
  40. 40.
    Philp RP (2007) The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Environ Chem Lett 5:57–66CrossRefGoogle Scholar
  41. 41.
    Smiley RA (2002) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  42. 42.
    Chan MS, Hunter WE (1981) United States Patent 4,299,965. Preparation of benzotriazole. pat. 4,299,965Google Scholar
  43. 43.
    Gorski CA, Nurmi JT, Tratnyek PG, Hofstetter TB, Scherer MM (2010) Redox behavior of magnetite: implications for contaminant reduction. Environ Sci Technol 44:55–60CrossRefGoogle Scholar
  44. 44.
    Hartenbach AE, Hofstetter TB, Aeschbacher M, Sander M, Kim D, Strathmann TJ, Arnold WA, Cramer CJ, Schwarzenbach RP (2008) Variability of nitrogen isotope fractionation during the reduction of nitroaromatic compounds with dissolved reductants. Environ Sci Technol 42:8352–8359CrossRefGoogle Scholar
  45. 45.
    Hartenbach AE, Hofstetter TB, Berg M, Bolotin J, Schwarzenbach RP (2006) Using nitrogen isotope fractionation to assess abiotic reduction of nitroaromatic compounds. Environ Sci Technol 40:7710–7716CrossRefGoogle Scholar
  46. 46.
    Schnegg U, Bormann U (1990) United States Patent 4,918,195. Process for preparing triazoles fused with aromatic systems by reaction of o-arylenediamines with nitrites. pat., 4,918,195Google Scholar
  47. 47.
    Berg M, Bolotin J, Hofstetter TB (2007) Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS. Anal Chem 79:2386–2393CrossRefGoogle Scholar
  48. 48.
    Janna H, Scrimshaw MD, Williams RJ, Churchley J, Sumpter JP (2011) From dishwasher to tap? Xenobiotic substances benzotriazole and tolytriazole in the environments. Environ Sci Technol 45:3858–3864CrossRefGoogle Scholar
  49. 49.
    Wolschke H, Xie Z, M¨oller A, Sturm R, Ebinghaus R (2011) Occurrence, distribution and fluxes of benzotriazoles along the German large river basins into the North Sea.Water Res 45:6259–6266CrossRefGoogle Scholar
  50. 50.
    Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J (2012) Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1268:74–83CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stephanie Spahr
    • 1
  • Sebastian Huntscha
    • 1
  • Jakov Bolotin
    • 1
  • Michael P. Maier
    • 2
  • Martin Elsner
    • 2
  • Juliane Hollender
    • 1
  • Thomas B. Hofstetter
    • 1
    Email author
  1. 1.Environmental ChemistryEAWAGDübendorfSwitzerland
  2. 2.Institute of Groundwater EcologyHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations