Analytical and Bioanalytical Chemistry

, Volume 405, Issue 7, pp 2245–2253 | Cite as

Preparation and characterization of an imprinted monolith by atom transfer radical polymerization assisted by crowding agents

Original Paper

Abstract

A method based on reverse atom transfer radical polymerization (R-ATRP) and molecular crowding has been used for design and synthesis of monolithic molecularly imprinted polymers (MIPs) capable of recognizing ibuprofen (IBU). 4-Vinylpyridine (4-VP) was used as the functional monomer, and ethylene glycol dimethacrylate (EDMA) was the crosslinking monomer. Azobisisobutyronitrile (AIBN)–CuCl2N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) was used as the initiating system. Compared with conventional radical polymerization-based IBU-MIPs, the imprinting effects of the obtained IBU-MIPs was enhanced, suggesting the merit of combination of reverse ATRP and molecular crowding. In addition, it was found that the polymerization time of the molecularly imprinted monolithic column, the amount of template, the degree of crosslinking, and the composition of mobile phase greatly affected retention of the template and the performance of molecular recognition

.
Figure

Schematic representation of molecular imprinting under molecular crowding conditions in the presence of R-ATRP

Keywords

Atom transfer radical polymerization Ibuprofen Molecularly imprinted polymer Molecular crowding Molecular recognition Monolith 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 21075090) and supported by the Hundred Talents Program of the Chinese Academy of Sciences.

References

  1. 1.
    Ebarvia BS, Sevilla F III (2005) Sens Actuators B: Chem 107:782–790CrossRefGoogle Scholar
  2. 2.
    Dakova IG, Karadjova IB, Georgieva VT, Georgiev GS (2009) Microchim Acta 164:55–61CrossRefGoogle Scholar
  3. 3.
    Zhao L, Ban L, Zhang QW, Huang YP, Liu ZS (2011) J Chromatogr A 1218:9071–9079CrossRefGoogle Scholar
  4. 4.
    Fan J, Wei YF, Wang JJ, Wu CL, Shi HL (2009) Anal Chim Acta 639:42–50CrossRefGoogle Scholar
  5. 5.
    Wulff G (2002) Chem Rev 102:1–27CrossRefGoogle Scholar
  6. 6.
    Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Macromolecules 28:1721–1723CrossRefGoogle Scholar
  7. 7.
    Wang JS, Matyjaszewski K (1995) Macromolecules 28:7901–7910CrossRefGoogle Scholar
  8. 8.
    Percec V, Barboiu B (1995) Macromolecules 28:7970–7972CrossRefGoogle Scholar
  9. 9.
    Matyjaszewski K, Xia JH (2001) Chem Rev 101:2921–2990CrossRefGoogle Scholar
  10. 10.
    Kamigaito M, Ando T, Sawamoto M (2001) Chem Rev 101:3689–3745CrossRefGoogle Scholar
  11. 11.
    Wei XL, Li X, Husson SM (2005) Biomacromolecules 6:1113–1121CrossRefGoogle Scholar
  12. 12.
    Li X, Husson SM (2006) Biosens Bioelectron 22:336–348CrossRefGoogle Scholar
  13. 13.
    Wei XL, Husson SM (2007) Ind Eng Chem Res 46:2117–2124CrossRefGoogle Scholar
  14. 14.
    Wang HJ, Zhou WH, Yin XF, Zhuang ZX, Yang HH, Wang XR (2006) J Am Chem Soc 128:15954–15955CrossRefGoogle Scholar
  15. 15.
    Matsui J, Goji S, Murashima T, Miyoshi D, Komai S, Shigeyasu A, Kushida T, Miyazawa T, Yamada T, Tamaki K, Sugimoto N (2007) Anal Chem 79:1749–1757CrossRefGoogle Scholar
  16. 16.
    Mu LN, Wang XH, Zhao L, Huang YP, Liu ZS (2011) J Chromatogr A 1218:9236–9243CrossRefGoogle Scholar
  17. 17.
    Shi XX, Xu L, Duan HQ, Huang YP, Liu ZS (2011) Electrophoresis 32:1348–1356CrossRefGoogle Scholar
  18. 18.
    Li XX, Hao LF, Huang YP, Duan HQ, Liu ZS (2012) Polym Eng Sci 52:1440–1449CrossRefGoogle Scholar
  19. 19.
    Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N (2001) Anal Chem 73:420A–429ACrossRefGoogle Scholar
  20. 20.
    Kim H, Guiochon G (2005) Anal Chem 77:93–102CrossRefGoogle Scholar
  21. 21.
    Ou J, Kong L, Pan C, Su X, Lei X, Zou H (2006) J Chromatogr A 1117:163–169CrossRefGoogle Scholar
  22. 22.
    Liu H, Zhuang X, Turson M, Zhang M, Dong X (2008) J Sep Sci 31:1694–1701CrossRefGoogle Scholar
  23. 23.
    Li H, Liu YJ, Zhang ZH, Liao HP, Nie LH, Yao SZ (2005) J Chromatogr A 1098:66–74CrossRefGoogle Scholar
  24. 24.
    Matsui J, Kato T, Takeuchi T, Suzuki M, Yokoyama K, Tamiya E, Karube I (1993) Anal Chem 65:2223–2224CrossRefGoogle Scholar
  25. 25.
    Sun XL, He J, Cai GR, Lin AQ, Zheng WJ, Liu X, Chen LX, He XW, Zhang YK (2010) J Sep Sci 33:3786–3793CrossRefGoogle Scholar
  26. 26.
    Huang YP, Zhang SJ, Wu X, Zhang QW, Liu ZS (2009) Chromatographia 70:691–698CrossRefGoogle Scholar
  27. 27.
    Holroyd SE, Groves P, Searle MS, Gerhard U, Williams DH (1993) Tetrahedron 49:9171–9182CrossRefGoogle Scholar
  28. 28.
    Sergeyeva TA, Brovko OO, Piletska EV, Piletsky SA, Goncharova LA, Karabanova LV, Sergeyeva LM, El’skaya AV (2007) Anal Chim Acta 582:311–319CrossRefGoogle Scholar
  29. 29.
    Sergeyeva TA, Piletsky SA, Piletska EV, Brovko OO, Karabanova LV, Sergeeva LM, El’skaya AV, Turner APF (2003) Macromolecules 36:7352–7357CrossRefGoogle Scholar
  30. 30.
    Schmidt RH, Belmont AS, Haupt K (2005) Anal Chim Acta 542:118–124CrossRefGoogle Scholar
  31. 31.
    Andersson HS, Karlsson JG, Piletsky SA, Koch-Schmidt AC, Mosbach K, Nicholls IA (1999) J Chromatogr A 848:39–49CrossRefGoogle Scholar
  32. 32.
    Sellergren B (1989) Makromol Chem 190:2703–2711CrossRefGoogle Scholar
  33. 33.
    Piletsky SA, Mijangos I, Guerreiro A, Piletska EP, Chianella I, Karim K, Turner APF (2005) Macromolecules 38:1410–1414CrossRefGoogle Scholar
  34. 34.
    Li XX, Bai LH, Wang H, Wang J, Huang YP, Liu ZS (2012) J Chromatogr A 1251:141–147CrossRefGoogle Scholar
  35. 35.
    Zhang ML, Xie JP, Zhou Q, Chen GQ, Liu Z (2003) J Chromatogr A 984:173–183CrossRefGoogle Scholar
  36. 36.
    Piletsky SA, Piletska EV, Karim K, Freebairn KW, Legge CH, Turner APF (2002) Macromolecules 35:7499–7504CrossRefGoogle Scholar
  37. 37.
    Searle MS, Williams DH (1992) J Am Chem Soc 114:10690–10697CrossRefGoogle Scholar
  38. 38.
    Haginaka J, Takehira H, Hosoya K, Tanaka N (1999) J Chromatogr A 849:331–339CrossRefGoogle Scholar
  39. 39.
    Hung CY, Huang YT, Huang HH, Hwang CC (2006) J Chin Chem Soc 53:1173–1180Google Scholar
  40. 40.
    Manesiotis P, Osmani Q, McLoughlin P (2012) J Mater Chem 22:11201–11207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of PharmacyTianjin Medical UniversityTianjinChina

Personalised recommendations