Analytical and Bioanalytical Chemistry

, Volume 405, Issue 1, pp 341–349 | Cite as

Determination of t,t-muconic acid in urine samples using a molecular imprinted polymer combined with simultaneous ethyl chloroformate derivatization and pre-concentration by dispersive liquid–liquid microextraction

  • Mohana Krishna Reddy MudiamEmail author
  • Abhishek Chauhan
  • Krishna P. Singh
  • Shailendra K. Gupta
  • Rajeev Jain
  • Ratnasekhar Ch
  • R. C. Murthy
Original Paper


The present communication describes the preparation and evaluation of a molecularly imprinted polymer (MIP) as a solid-phase extraction (SPE) sorbent and simultaneous ethyl chloroformate (ECF) derivatization and pre-concentration by dispersive liquid–liquid microextraction (DLLME) for the analysis of t,t-muconic acid (t,t-MA) in urine samples using gas chromatography–mass spectrometry. The imprinting polymer was prepared using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, 2,2-azobisisobutyronitrile as the initiator and t,t-MA as a template molecule. The imprinted polymer was evaluated for its use as a SPE sorbent by comparing both imprinted and non-imprinted polymers in terms of the recovery of t,t-MA from urine samples. Molecular modelling studies were performed in order to estimate the binding energy and efficiency of the MIP complex formed between the monomer and the t,t-MA. Various factors that can affect the extraction efficiency of MIP, such as the loading, washing and eluting conditions, were optimized; other factors that can affect the derivatization and DLLME pre-concentration were also optimized. MIP in combination with ECF derivatization and DLLME pre-concentration for t,t-MA exhibits good linearity, ranging from 0.125 to 2 μg mL−1 (R 2 = 0.9971), with limit of detection of 0.037 μg mL−1 and limit of quantification of 0.109 μg mL−1. Intra- and inter-day precision was found to be <6 %. The proposed method has been proven to be effective and sensitive for the selective pre-concentration and determination of t,t-MA in urine samples of cigarette smokers.


Graphical abstract for t,t-muconic acid analysis by using MISPE-DLLME followed by GC-MS analysis


Muconic acid Molecularly imprinted polymers Gas chromatography–mass spectrometry Molecular modelling Ethyl chloroformate Dispersive liquid–liquid microextraction 



The authors are thankful to Dr. K.C. Gupta, Director, CSIR-IITR, Lucknow, for his suggestions and constant support. AC and RJ are thankful to UGC, New Delhi; R Ch is thankful to CSIR, New Delhi, for providing research fellowship. The authors acknowledge the financial support from OLP-0004 (CSIR-EMPOWER scheme).

Supplementary material

216_2012_6474_MOESM1_ESM.pdf (996 kb)
ESM 1 (PDF 996 kb)


  1. 1.
    Rappaport SM, Kim S, Lan Q, Li G, Vermeulen R, Waidyanatha S, Zhang L, Yin S, Smith MT, Rothman N (2010) Chem–Biol Interact 184:189–195CrossRefGoogle Scholar
  2. 2.
    Xing C, Marchetti F, Li G, Weldon RH, Kurtovich E, Young S, Schmid TE, Zhang L, Rappaport S, Waidyanatha S, Eskenazi AJWB (2010) Environ Health Perspect 118:833–839CrossRefGoogle Scholar
  3. 3.
    Ong CN, Kok PW, Ong HY, Shi CY, Lee BL, Phoon WH, Tan KT (1996) Occup Environ Med 53:328–333CrossRefGoogle Scholar
  4. 4.
    Melikian AA, Qu Q, Shore R, Li G, Li H, Jin X, Cohen B, Chen L, Li Y, Yin S, Mu R, Zhang X, Wang Y (2002) J Chromatogr B 778:211–221CrossRefGoogle Scholar
  5. 5.
    Serena P, Tapparo A, Bombi GG (2000) Analyst 125:689–692CrossRefGoogle Scholar
  6. 6.
    Tranfo G, Paci E, Sisto R, Pigini D (2008) J Chromatogr B 867:26–31CrossRefGoogle Scholar
  7. 7.
    Suwansaksri J, Wiwanitkit V (2000) Southeast Asian J Trop Med Public Health 31:587–589Google Scholar
  8. 8.
    Kirley TA, Goldstein BD, Maniara WN, Witz G (1989) Toxicol Appl Pharmacol 100:360–367CrossRefGoogle Scholar
  9. 9.
    Shahtaheri SJ, Ghamari F, Golbabaei F, Froushani AR, Abdollahi M (2005) Int J Occup Safety Ergonomics 11:377–388Google Scholar
  10. 10.
    Scherer G, Renner T, Meger M (1998) J Chromatogr B: Biomed Sci Appl 717:179–199CrossRefGoogle Scholar
  11. 11.
    Liao PC, Li CM, Lin LC, Hung CW (2002) J Anal Toxicol 26:205–210Google Scholar
  12. 12.
    Waidyanatha S, Rothman N, Li G, Smith MT, Yin S, Rappaport SM (2004) Anal Biochem 327:184–199CrossRefGoogle Scholar
  13. 13.
    Wang B, Wang Y, Yang H, Wang J, Deng A (2011) Microchim Acta 174:191–199CrossRefGoogle Scholar
  14. 14.
    Vas G, Vekey K (2004) J Mass Spectrom 39:233–254CrossRefGoogle Scholar
  15. 15.
    Theodoridis G, Manesiotis P (2002) J Chromatogr 948:163–169CrossRefGoogle Scholar
  16. 16.
    He C, Long Y, Pan J, Li K, Liu F (2007) J Biochem Biophys Methods 70:133–150CrossRefGoogle Scholar
  17. 17.
    Barahona F, Turiel E, Cormack PAG, Estaban AM (2010) J Polymer Sci Part A: Polym Chem 48:1058–1066CrossRefGoogle Scholar
  18. 18.
    Kareuhanon W, Lee VS, Nimmanpipug P, Tayapiwatana C, Pattarawarapan M (2009) Chromatographia 70:1531–1537CrossRefGoogle Scholar
  19. 19.
    Sellergren B (1994) Anal Chem 66:1578–1582CrossRefGoogle Scholar
  20. 20.
    Moller K, Crescenzi C, Nilsson U (2004) Anal Bioanal Chem 378:197–204CrossRefGoogle Scholar
  21. 21.
    Vieira AC, Zampieri RA, Siqueira MEPB, Martins I, Figueiredo EC (2012) Analyst 137:2462–2469CrossRefGoogle Scholar
  22. 22.
    Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9CrossRefGoogle Scholar
  23. 23.
    Hu J, Fu L, Zhao X, Liu X, Wang H, Wang X, Dai L (2009) Anal Chim Acta 640:100–105CrossRefGoogle Scholar
  24. 24.
    Mudiam MKR, Jain R, Maurya SK, Khan HK, Bandyopadhyay S, Murthy RC (2012) J Chromatogr B 895–896:65–70CrossRefGoogle Scholar
  25. 25.
    Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897–8909CrossRefGoogle Scholar
  26. 26.
    Rappe AK, Goddard WA (1991) J Phys Chem 95:3358–3363CrossRefGoogle Scholar
  27. 27.
    Boogaard PJ, Sittert NJ (1996) Environ Health Perspect 104:1151–1157Google Scholar
  28. 28.
    Yan H, Qiao J, Wang H, Yang G, Row KH (2011) Analyst 136:2629–2634CrossRefGoogle Scholar
  29. 29.
    Ebrahimzadeh H, Abedi H, Yamini Y, Adlnasab L (2010) J Sep Sci 33:3759–3766CrossRefGoogle Scholar
  30. 30.
    Farrington K, Magner E, Regan F (2006) Anal Chim Acta 566:60–68CrossRefGoogle Scholar
  31. 31.
    Sun Z, Schussler W, Sengl M, Niessner R, Knoppa D (2008) Anal Chim Acta 620:73–81CrossRefGoogle Scholar
  32. 32.
    Mudiam MKR, Jain R, Dua VK, Singh AK, Sharma VP, Murthy RC (2011) Anal Bioanal Chem 401:1699–1705CrossRefGoogle Scholar
  33. 33.
    Husek P (1991) J Chromatogr 552:289–299CrossRefGoogle Scholar
  34. 34.
    Husek P, Simek P, Matucha P (2003) Chromatographia 58:623–630Google Scholar
  35. 35.
    Husek P (1998) J Chromatogr B: Biomed Sci Appl 717:57–91CrossRefGoogle Scholar
  36. 36.
    Husek P, Simek P (2006) Curr Pharm Anal 2:23–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohana Krishna Reddy Mudiam
    • 1
    Email author
  • Abhishek Chauhan
    • 1
  • Krishna P. Singh
    • 2
  • Shailendra K. Gupta
    • 2
  • Rajeev Jain
    • 1
  • Ratnasekhar Ch
    • 1
  • R. C. Murthy
    • 1
  1. 1.Analytical Chemistry SectionCSIR—Indian Institute of Toxicology ResearchLucknowIndia
  2. 2.System ToxicologyCSIR—Indian Institute of Toxicology ResearchLucknowIndia

Personalised recommendations