Analytical and Bioanalytical Chemistry

, Volume 404, Issue 10, pp 2915–2926 | Cite as

Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry

  • Christina R. Ferreira
  • Valentina Pirro
  • Livia S. Eberlin
  • Judy E. Hallett
  • R. Graham Cooks
Original Paper


Knowledge of the lipids present in individual preimplantation embryos is of interest in fundamental studies of embryology, in attempts to understand cellular pluripotency and in optimization of in vitro culture conditions necessary for the application and development of biotechnologies such as in vitro fertilization and transgenesis. In this work, the profiles of fatty acids and phospholipids (PL) in individual mouse preimplantation embryos and oocytes were acquired using an analytical strategy based on desorption electrospray ionization mass spectrometry (DESI-MS). The methodology avoids sample preparation and provides information on the lipids present in these microscopic structures. Differences in the lipid profiles observed for unfertilized oocytes, two- and four-cell embryos, and blastocysts were characterized. For a representative set of embryos (N = 114) using multivariate analysis (specifically principal component analysis) unfertilized oocytes showed a narrower range of PL species than did blastocysts. Two- and four-cell embryos showed a wide range of PLs compared with unfertilized oocytes and high abundances of fatty acids, indicating pronounced synthetic activity. The data suggest that the lipid changes observed in mouse preimplantation development reflect acquisition of a degree of cellular membrane functional and structural specialization by the blastocyst stage. It is also noteworthy that embryos cultured in vitro from the two-cell through the blastocyst stage have a more homogeneous lipid profile as compared with their in vivo-derived counterparts, which is ascribed to the restricted diversity of nutrients present in synthetic culture media. The DESI-MS data are interpreted from lipid biochemistry and previous reports on gene expression of diverse lipids known to be vital to early embryonic development.


Desorption electrospray ionization Lipid analysis Embryology Preimplantation development 



Support from the Purdue University Center for Cancer Research Small Grants is gratefully acknowledged. Additional support from NSF DBI-0852740 is also acknowledged. We thank Annemarie Kaufmann for technical assistance and Sean E. Humpfrey for discussion of the data.

Supplementary material

216_2012_6426_MOESM1_ESM.pdf (536 kb)
ESM 1 (PDF 536 kb)


  1. 1.
    Bavister BD (1998) Preimplantation embryo development (Serono Symposia USA). Springer, BerlinGoogle Scholar
  2. 2.
    Park CH, Uh KJ, Mulligan BP, Jeung EB, Hyun SH, Shin T, Ka H, Lee CK (2011) Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos. PLoS One 6(7):e22216. doi: 10.1371/journal.pone.0022216 CrossRefGoogle Scholar
  3. 3.
    Leidenfrost S, Boelhauve M, Reichenbach M, Gungor T, Reichenbach HD, Sinowatz F, Wolf E, Habermann FA (2011) Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model. PLoS One 6(7):e22121. doi: 10.1371/journal.pone.0022121 CrossRefGoogle Scholar
  4. 4.
    Gal AB, Carnwath JW, Dinnyes A, Herrmann D, Niemann H, Wrenzycki C (2006) Comparison of real-time polymerase chain reaction and end-point polymerase chain reaction for the analysis of gene expression in preimplantation embryos. Reprod Fertil Dev 18(3):365–371CrossRefGoogle Scholar
  5. 5.
    Niemann H, Wrenzycki C (2000) Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53(1):21–34CrossRefGoogle Scholar
  6. 6.
    Fear JM, Hansen PJ (2011) Developmental changes in expression of genes involved in regulation of apoptosis in the bovine preimplantation embryo. Biol Reprod 84(1):43–51. doi: 10.1095/biolreprod.110.086249 CrossRefGoogle Scholar
  7. 7.
    Hansis C, Edwards RG (2003) Cell differentiation in the preimplantation human embryo. Reprod Biomed Online 6(2):215–220CrossRefGoogle Scholar
  8. 8.
    Schulz LC, Roberts RM (2011) Dynamic changes in leptin distribution in the progression from ovum to blastocyst of the pre-implantation mouse embryo. Reproduction 141(6):767–777. doi: 10.1530/REP-10-0532 CrossRefGoogle Scholar
  9. 9.
    McKeegan PJ, Sturmey RG (2012) The role of fatty acids in oocyte and early embryo development. Reprod Fert Develop 24(1):59–67. doi: 10.1071/Rd11907 CrossRefGoogle Scholar
  10. 10.
    Sutton-McDowall ML, Feil D, Robker RL, Thompson JG, Dunning KR (2012) Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology 77(8):1632–1641. doi: 10.1016/j.theriogenology.2011.12.008 CrossRefGoogle Scholar
  11. 11.
    Lapa M, Marques CC, Alves SP, Vasques MI, Baptista MC, Carvalhais I, Pereira MS, Horta AEM, Bessa RJB, Pereira RM (2011) Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition. Reprod Domest Anim 46(5):904–910. doi: 10.1111/j.1439-0531.2011.01762.x CrossRefGoogle Scholar
  12. 12.
    Michael I, Gurr JLH, Frayn KN (eds) (2005) Lipid biochemistry, 5th edn. Blackwell, OxfordGoogle Scholar
  13. 13.
    Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL (2010) Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 83(6):909–918. doi: 10.1095/biolreprod.110.084145 CrossRefGoogle Scholar
  14. 14.
    Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44(5):264–277. doi: 10.1080/10409230903193307 CrossRefGoogle Scholar
  15. 15.
    Cazzolli R, Shemon AN, Fang MQ, Hughes WE (2006) Phospholipid signalling through phospholipase D and phosphatidic acid. IUBMB Life 58(8):457–461. doi: 10.1080/15216540600871142 CrossRefGoogle Scholar
  16. 16.
    Pratt HP (1980) Phospholipid synthesis in the preimplantation mouse embryo. J Reprod Fertil 58(1):237–248CrossRefGoogle Scholar
  17. 17.
    Moon EA, ONeill C (1997) CTP:phosphocholine cytidylyltransferase activity in the preimplantation mouse embryo. J Reprod Fertil 110(2):213–218CrossRefGoogle Scholar
  18. 18.
    Vanwinkle LJ, Campione AL, Mann DF, Wasserlauf HG (1993) The cation receptor subsite of the choline transporter in preimplantation mouse conceptuses resembles a cation receptor subsite of several amino-acid transporters. Biochimica Et Biophysica Acta 1146(1):38–44CrossRefGoogle Scholar
  19. 19.
    Kim JY, Kinoshita M, Ohnishi M, Fukui Y (2001) Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction 122(1):131–138CrossRefGoogle Scholar
  20. 20.
    Matorras R, Ruiz JI, Mendoza R, Ruiz N, Sanjurjo P, Rodriguez-Escudero FJ (1998) Fatty acid composition of fertilization-failed human oocytes. Hum Reprod 13(8):2227–2230CrossRefGoogle Scholar
  21. 21.
    Hillman N, Flynn TJ (1980) The metabolism of exogenous fatty acids by preimplantation mouse embryos developing in vitro. J Embryol Exp Morphol 56:157–168Google Scholar
  22. 22.
    Zhou M, Veenstra T (2008) Mass spectrometry: m/z 1983-2008. Biotechniques 44(5):667–668, 670. doi: 10.2144/000112791 Google Scholar
  23. 23.
    Casado B, Affolter M, Kussmann M (2009) OMICS-rooted studies of milk proteins, oligosaccharides and lipids. J Proteomics 73(2):196–208. doi: 10.1016/j.jprot.2009.09.018 CrossRefGoogle Scholar
  24. 24.
    Ferreira CR, Eberlin LS, Hallett JE, Cooks RG (2012) Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry. J Mass Spectrom 47(1):29–33. doi: 10.1002/jms.2022 CrossRefGoogle Scholar
  25. 25.
    Ferreira CR, Saraiva SA, Catharino RR, Garcia JS, Gozzo FC, Sanvido GB, Santos LF, Lo Turco EG, Pontes JH, Basso AC, Bertolla RP, Sartori R, Guardieiro MM, Perecin F, Meirelles FV, Sangalli JR, Eberlin MN (2010) Single embryo and oocyte lipid fingerprinting by mass spectrometry. J Lipid Res 51(5):1218–1227. doi: 10.1194/jlr.D001768 CrossRefGoogle Scholar
  26. 26.
    Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC (2007) TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal Chem 79(6):2199–2206. doi: 10.1021/ac061370u CrossRefGoogle Scholar
  27. 27.
    Kurczy ME, Piehowsky PD, Willingham D, Molyneaux KA, Heien ML, Winograd N, Ewing AG (2010) Nanotome cluster bombardment to recover spatial chemistry after preparation of biological samples for SIMS imaging. J Am Soc Mass Spectrom 21(5):833–836. doi: 10.1016/j.jasms.2010.01.014 CrossRefGoogle Scholar
  28. 28.
    Manicke NE, Wiseman JM, Ifa DR, Cooks RG (2008) Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J Am Soc Mass Spectrom 19(4):531–543. doi: 10.1016/j.jasms.2007.12.003 CrossRefGoogle Scholar
  29. 29.
    Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Detection technologies. Ambient mass spectrometry. Science 311(5767):1566–1570. doi: 10.1126/science.1119426 CrossRefGoogle Scholar
  30. 30.
    Drake RR, Boggs SR, Drake SK (2011) Pathogen identification using mass spectrometry in the clinical microbiology laboratory. J Mass Spectrom 46(12):1223–1232. doi: 10.1002/jms.2008 CrossRefGoogle Scholar
  31. 31.
    Amantonico A, Urban PL, Zenobi R (2010) Analytical techniques for single-cell metabolomics: state of the art and trends. Anal Bioanal Chem 398(6):2493–2504. doi: 10.1007/s00216-010-3850-1 CrossRefGoogle Scholar
  32. 32.
    Song Y, Talaty N, Tao WA, Pan Z, Cooks RG (2007) Rapid ambient mass spectrometric profiling of intact, untreated bacteria using desorption electrospray ionization. Chem Commun (Camb) 1:61–63. doi: 10.1039/b615724f CrossRefGoogle Scholar
  33. 33.
    Meetani MA, Shin YS, Zhang S, Mayer R, Basile F (2007) Desorption electrospray ionization mass spectrometry of intact bacteria. J Mass Spectrom 42(9):1186–1193. doi: 10.1002/jms.1250 CrossRefGoogle Scholar
  34. 34.
    Nemes P, Vertes A (2012) Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. TrAC Trends Anal Chem 34:22–34. doi: 10.1016/j.trac.2011.11.006 CrossRefGoogle Scholar
  35. 35.
    Costa AB, Cooks RG (2007) Simulation of atmospheric transport and droplet-thin film collisions in desorption electrospray ionization. Chem Commun (Camb) 38:3915–3917. doi: 10.1039/b710511h CrossRefGoogle Scholar
  36. 36.
    Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cheng L, Cooks RG (2011) Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. Chembiochem 12(14):2129–2132. doi: 10.1002/cbic.201100411 CrossRefGoogle Scholar
  37. 37.
    Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35(Web Server issue):W606–W612, 10.1093/nar/gkm324CrossRefGoogle Scholar
  38. 38.
    Jolliffe IT (2002) Principal component analysis. Springer Series in Statistics, 2nd edn. Springer, New YorkGoogle Scholar
  39. 39.
    Pirro V, Eberlin LS, Oliveri P, Cooks RG (2012) Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst 137(10):2374–2380. doi: 10.1039/c2an35122f CrossRefGoogle Scholar
  40. 40.
    Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cooks RG (2011) Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim Biophys Acta 1811(11):946–960. doi: 10.1016/j.bbalip. 2011.05.006 CrossRefGoogle Scholar
  41. 41.
    Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci USA 105(47):18120–18125. doi: 10.1073/pnas.0801066105 CrossRefGoogle Scholar
  42. 42.
    Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Cooks RG, Agar NY (2012) Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72(3):645–654. doi: 10.1158/0008-5472.CAN-11-2465 CrossRefGoogle Scholar
  43. 43.
    Dill AL, Eberlin LS, Costa AB, Zheng C, Ifa DR, Cheng L, Masterson TA, Koch MO, Vitek O, Cooks RG (2011) Multivariate statistical identification of human bladder carcinomas using ambient ionization imaging mass spectrometry. Chemistry 17(10):2897–2902. doi: 10.1002/chem.201001692 CrossRefGoogle Scholar
  44. 44.
    Manicke NE, Nefliu M, Wu C, Woods JW, Reiser V, Hendrickson RC, Cooks RG (2009) Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal Chem 81(21):8702–8707. doi: 10.1021/ac901739s CrossRefGoogle Scholar
  45. 45.
    Girod M, Shi Y, Cheng JX, Cooks RG (2011) Mapping lipid alterations in traumatically injured rat spinal cord by desorption electrospray ionization imaging mass spectrometry. Anal Chem 83(1):207–215. doi: 10.1021/ac102264z CrossRefGoogle Scholar
  46. 46.
    Muller T, Oradu S, Ifa DR, Cooks RG, Krautler B (2011) Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry. Anal Chem 83(14):5754–5761. doi: 10.1021/ac201123t CrossRefGoogle Scholar
  47. 47.
    Song Y, Talaty N, Datsenko K, Wanner BL, Cooks RG (2009) In vivo recognition of Bacillus subtilis by desorption electrospray ionization mass spectrometry (DESI-MS). Analyst 134(5):838–841. doi: 10.1039/b900069k CrossRefGoogle Scholar
  48. 48.
    Xiong X, Xu W, Eberlin LS, Wiseman JM, Fang X, Jiang Y, Huang Z, Zhang Y, Cooks RG, Ouyang Z (2012) Data processing for 3D mass spectrometry imaging. J Am Soc Mass Spectrom 23(6):1147–1156. doi: 10.1007/s13361-012-0361-7 CrossRefGoogle Scholar
  49. 49.
    Dill AL, Eberlin LS, Costa AB, Ifa DR, Cooks RG (2011) Data quality in tissue analysis using desorption electrospray ionization. Anal Bioanal Chem 401(6):1949–1961. doi: 10.1007/s00216-011-5249-z CrossRefGoogle Scholar
  50. 50.
    Adjaye J, Herwig R, Brink TC, Herrmann D, Greber B, Sudheer S, Groth D, Carnwath JW, Lehrach H, Niemann H (2007) Conserved molecular portraits of bovine and human blastocysts as a consequence of the transition from maternal to embryonic control of gene expression. Physiol Genomics 31(2):315–327CrossRefGoogle Scholar
  51. 51.
    Vallee M, Aiba K, Piao Y, Palin MF, Ko MSH, Sirard MA (2008) Comparative analysis of oocyte transcript profiles reveals a high degree of conservation among species. Reproduction 135(4):439–448. doi: 10.1530/Rep-07-0342 CrossRefGoogle Scholar
  52. 52.
    Dill AL, Ifa DR, Manicke NE, Costa AB, Ramos-Vara JA, Knapp DW, Cooks RG (2009) Lipid profiles of canine invasive transitional cell carcinoma of the urinary bladder and adjacent normal tissue by desorption electrospray ionization imaging mass spectrometry. Anal Chem 81(21):8758–8764. doi: 10.1021/ac901028b CrossRefGoogle Scholar
  53. 53.
    Billah MM, Anthes JC (1990) The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 269(2):281–291Google Scholar
  54. 54.
    Helmreich EJ (2003) Environmental influences on signal transduction through membranes: a retrospective mini-review. Biophys Chem 100(1–3):519–534CrossRefGoogle Scholar
  55. 55.
    Lapa M, Marques CC, Alves SP, Vasques MI, Baptista MC, Carvalhais I, Silva Pereira M, Horta AE, Bessa RJ, Pereira RM (2011) Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition. Reprod Domest Anim 46(5):904–910. doi: 10.1111/j.1439-0531.2011.01762.x CrossRefGoogle Scholar
  56. 56.
    Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6(1):133–144CrossRefGoogle Scholar
  57. 57.
    Ferguson EM, Leese HJ (2006) A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev 73(9):1195–1201. doi: 10.1002/Mrd.20494 CrossRefGoogle Scholar
  58. 58.
    Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232. doi: 10.1146/annurev.biochem.66.1.199 CrossRefGoogle Scholar
  59. 59.
    Burnum KE, Cornett DS, Puolitaival SM, Milne SB, Myers DS, Tranguch S, Brown HA, Dey SK, Caprioli RM (2009) Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J Lipid Res 50(11):2290–2298. doi: 10.1194/jlr.M900100-JLR200 CrossRefGoogle Scholar
  60. 60.
    Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657. doi: 10.1038/nature05185 CrossRefGoogle Scholar
  61. 61.
    Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111(10):6491–6512. doi: 10.1021/cr200280p CrossRefGoogle Scholar
  62. 62.
    Krisher RL, Wheeler MB (2010) Towards the use of microfluidics for individual embryo culture. Reprod Fertil Dev 22(1):32–39. doi: 10.1071/RD09219 CrossRefGoogle Scholar
  63. 63.
    Campbell DI, Ferreira CR, Eberlin LS, Cooks RG (2012) Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization. Anal Bioanal Chem. doi: 10.1007/s00216-012-6173-6

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christina R. Ferreira
    • 1
  • Valentina Pirro
    • 1
    • 2
  • Livia S. Eberlin
    • 1
  • Judy E. Hallett
    • 3
  • R. Graham Cooks
    • 1
  1. 1.Aston Laboratory for Mass Spectrometry Laboratory, Chemistry DepartmentPurdue UniversityWest LafayetteUSA
  2. 2.Chemistry DepartmentUniversity of TurinTurinItaly
  3. 3.Cancer Center Transgenic Mouse Core FacilityPurdue UniversityWest LafayetteUSA

Personalised recommendations